TY - JOUR T1 - Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları TT - Pseudo-Riemannian Submanifolds of Minkowski Space with Generalized 1-Type Gauss Map AU - Bektaş Demirci, Burcu PY - 2022 DA - June DO - 10.35414/akufemubid.1109995 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 536 EP - 551 VL - 22 IS - 3 LA - tr AB - Bu makalede, genelleştirilmiş 1-tipinden Gauss tasvirine sahip Minkowski uzayındaki dönel yüzeyler ve regle alt manifoldları üzerine çalışılmıştır. İlk olarak, ikinci çeşit noktasal 1-tipinden Gauss tasviri ile genelleştirilmiş 1-tipinden Gauss tasviri kavramları arasındaki ilişki verilmiştir. Daha sonra, 3-boyutlu Minkowski uzayında sabit ortalama eğriliğe sahip tümden jeodezik olmayan herhangi bir yüzeyin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olamayacağı ispatlanmıştır. Diğer bölümde, E_1^3 uzayındaki bütün dönel yüzeylerin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olduğu gösterilmiştir. Ayrıca, genelleştirilmiş 1-tipinden Gauss tasvirine sahip dönel yüzeylerle ilgili bir örnek verilmiştir. Son bölümde ise, E_1^(m )Minkowski uzayındaki regle alt manifoldları üzerine çalışılmıştır ve genelleştirilmiş 1-tipinden Gauss tasvirine sahip silindirik regle alt manifoldları incelenmiştir. KW - Genelleştirilmiş 1-Tipinden GaussTasviri KW - Dönel Yüzeyler KW - Minkowski Uzayı KW - Regle Alt Manifoldları N2 - In this article, we study on rotational surfaces and regle submanifolds of the Minkowski space with generalized 1-type Gauss map. First of all, we give a relation between notions of pointwise 1-type Gauss map of the second kind and generalized 1-type Gauss map. Then, we prove that any non-totally geodesic surface in 3-dimensional Minkowski space with constant mean curvature does not have a generalized 1-type Gauss map. In other section, we show that all rotational surfaces in E_1^3 have generalized 1-type Gauss map. Furthermore, we give an example for the rotational surface having generalized 1-type Gauss map. In last section, we study the ruled submanifolds in the Minkowski space E_1^m and we examine the cylindrical ruled submanifolds having generalized 1-type Gauss map. CR - Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.-H., Murathan, C. and Öztürk, G., 2011. Rotational embeddings in E^4 with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 35(3), 493-499. CR - Aksoyak, F.K. and Yaylı, Y., 2015. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E_2^4. Indian Journal of Pure and Applied Mathematics, 46(1), 107-118. CR - Arslan, K. and Milousheva, V., 2016. Meridian surfaces of elliptic or hyperbolic with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese Journal of Mathematics, 20(2), 311-332. CR - Baikoussis, C. and Blair, D.E., 1992. On the Gauss map of ruled surfaces. Glasgow Mathematical Journal, 34(3), 355-359. CR - Baikoussis, C., Chen, B.-Y. and Verstraelen, L., 1993. Ruled surfaces and tubes with finite type Gauss map. Tokyo Journal of Mathematics, 16(2), 341-349. CR - Baikoussis, C., 1994. Ruled submanifolds with finite type Gauss map. Journal of Geometry, 49(1), 42-45. CR - Bektaş, B. and Dursun, U., 2015. Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Filomat, 29(3), 381-392. CR - Chen, B.-Y., 1973, Geometry of Submanifolds, Marcel Dekker, Inc. CR - Chen, B.-Y., Morvan, J. M. and Nore, T., 1986. Energy, tension and finite type maps. Kodai Mathematical Journal, 9(3), 406-418. CR - Chen, B.-Y. and Piccinni, P., 1987. Submanifolds with finite type Gauss map. Bulletin of the Australian Mathematical Society, 35(2), 161-186. CR - Chen, B.-Y., 1996. A report on submanifolds of finite type. Soochow Journal of Mathematics, 22(2), 117-337. CR - Chen, B.-Y, Choi, M. and Kim, Y.-H., 2005. Surfaces of revolution with pointwise 1-type Gauss map. Journal of the Korean Mathematical Society, 42(3), 447-455. CR - Chen, B.-Y., 2011, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific Publishing Company. CR - Chen, B.-Y, 2014. Some open problems and conjectures on submanifolds of finite type: recent development. Tamkang Journal of Mathematics, 45(1), 87-108. CR - Chen, B.-Y., 2014, Total Mean Curvature and Submanifolds of Finite Type, 27, World Scientific. CR - Choi, M.-K. and Kim, Y.-H., 2001. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society, 38(4), 753-761. CR - Choi, M.-K. and Kim, Y.-H., 2018. Extension of eigenvalue problems on Gauss map of ruled surfaces. Symmetry, 10(10), 514. CR - Choi, M.-K. and Kim, Y.-H., 2018. Classification theorems of ruled surfaces in Minkowski three-space. Mathematics, 6(12), 318. CR - Dursun, U., 2007. Hypersurfaces with pointwise 1-type Gauss Map. Taiwanese Journal of Mathematics, 11(5), 1407-1416. CR - Dursun, U., 2009. Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space. Proceedings of the Estonian Academy of Sciences, 58(3), 146-161. CR - Dursun, U. and Coşkun, E., 2012. Flat surfaces in E_1^(3 )with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 36(4), 613-629. CR - Dursun, U. and Bektaş, B., 2014. Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Mathematical Physics, Analysis and Geometry, 17(1), 247-263. CR - İlim, K. and Öztürk, G., 2019. Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space. International Electronic Journal of Geometry, 12(2), 202-209. CR - Jung, S. M. and Kim, Y.-H., 2018. Gauss map and its applications on ruled submanifolds in Minkowski space. Symmetry, 10(6), 218. CR - Jung, S. M., Kim, D. S., and Kim, Y.-H., 2018. Minimal ruled submanifolds associated with Gauss map. Taiwanese Journal of Mathematics, 22(3), 567-605. CR - Kim, Y.-H. and Yoon, D.W., 2000. Ruled surfaces with pointwise 1-type Gauss map. Journal of Geometry and Physics, 34(3-4), 191-205. CR - Kim, Y.-H. and Yoon, D.W., 2004. Classification of rotation surfaces in pseudo-Euclidean space. Journal of the Korean Mathematical Society, 41(2), 379-396. CR - Ki, U.H, Kim, D.S., Kim, Y.-H. and Roh, Y.-H., 2009. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwanese Journal of Mathematics, 13(1), 317-338. CR - Kim, D.-S. and Kim, Y.-H., 2012. Some classification results on finite-type ruled submanifolds in a Lorentz-Minkowski space. Taiwanese Journal of Mathematics, 16(4), 1475-1488. CR - Milousheva, V. and Turgay, N.C., 2016. Quasi minimal Lorentz surfaces with pointwise 1-type Gauss map in Pseudo-Euclidean 4-space. Journal of Geometry and Physics, 106, 171-183. CR - O’Neill, B., 1983, Semi-Riemann Geometry with Applications to Relativity, Academic Press. CR - Qian, J., Fu, X. and Jung, S. D., 2020. Dual associate null scrolls with generalized 1-type Gauss map. Mathematics, 8(7), 1111.Qian, J. H., Su, M. F. and Kim, Y.-H., 2021. Canal surfaces with generalized 1-type Gauss map. Revista De La Union Matematica Argentina, 62, 199-211. CR - Thas, C., 1978. Minimal monosytems. Yokohama Mathematical Journal, 26, 157-167. CR - Turgay, N. C, 2015. Some classifications of Lorentzian surfaces with finite type Gauss map in Minkowski 4-space. Journal of the Australian Mathematical Society, 99(3), 415-427. CR - Yoon, D.W., 2001. Rotation surfaces with finite type Gauss map in E^4. Indian Journal of Pure & Applied Mathematics, 32(12), 1803-1808. CR - Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Classifications of flat surfaces with generalized 1-type Gauss map in L^3. Mediterranean Journal of Mathematics, 15(3), 1-16. CR - Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Hypersurfaces with generalized 1-type Gauss maps. Mathematics,6(8),130. UR - https://doi.org/10.35414/akufemubid.1109995 L1 - https://dergipark.org.tr/tr/download/article-file/2401379 ER -