@article{article_1110454, title={Mahalanobis uzaklığı tabanlı aykırı değer bulma ve ReliefF öznitelik seçimine dayalı bir makine öğrenmesi yaklaşımı ile akıllı telefon verileri üzerinden stres tespiti}, journal={Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi}, volume={28}, pages={336–345}, year={2022}, author={Sağbaş, Ensar Arif and Korukoğlu, Serdar and Ballı, Serkan}, keywords={Stres tespiti, Mahalanobis uzaklığı, Öznitelik değerlendirme, Akıllı telefon verileri, Yazma davranışı}, abstract={Stres kişinin odaklanması, uyanık kalması ve tetikte olması durumlarında fayda sağlamaktadır. Fakat yüksek dozda strese maruz kalmak kişinin sağlığına zarar vermektedir. Bu nedenle stresin tespit edilip en kısa sürede rahatlamaya geçilmesi önemlidir. Bu çalışmada, akıllı telefondan elde edilen dokunmatik panel, yerçekimi, doğrusal ivme ve jiroskop verileri ile yazma davranışları incelenmiştir. Elde edilen sonuçlardan yazma davranışları ile kişilerin stres seviyeleri arasında bir bağlantı olduğu görülmüştür. Bu kapsamda genişletilmiş bir veri kümesi oluşturulmuştur. Stresin daha yüksek doğrulukta tespit edilebilmesi için Mahalanobis uzaklığı tabanlı bir aykırı veri tespiti yaklaşımı uygulanmıştır. Devamında, verimli özniteliklerin tespit edilerek sınıflandırma gerçekleştirilmesi için ReliefF öznitelik seçimi yöntemi ve makine öğrenmesi teknikleri kombine edilerek bir yapı oluşturulmuştur. Aykırı verilerin temizlenerek elde edilen sonuçlar, oluşturulan yapıların yüksek doğrulukta başarı yakaladığını göstermiştir. Ek olarak aykırı veri tespiti ve temizliği, sınıflandırma başarısını 1.77 puan artırmıştır.}, number={2}, publisher={Pamukkale Üniversitesi}