@article{article_1131565, title={Doğal dil işleme ve derin öğrenme algoritmaları ile makine dili modellemesi}, journal={Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi}, volume={13}, pages={467–475}, year={2022}, DOI={10.24012/dumf.1131565}, author={Dayan, Ali and Yılmaz, Atınç}, keywords={Makine dili, makine öğrenmesi, doğal dil işleme, evrişimsel sinir ağları}, abstract={İnsanlar ve tüm canlılar için dil, iletişim konusunda en önemli unsurlardandır. Literatürde dillerin oluşumu ve doğal dil işleme süreçleri ile ilgili oldukça fazla sayıda çalışmalar yapılmış; bu çalışmalarda analiz, yaklaşım ve yöntem açısından farklılıklar içerdiği görülmüştür. Çalışmada literatüre katkı olarak makinelerin kendi dilini oluşturabilmesi için bir model önerilmiştir. Bu bakış açısı ile makinelerin kendi aralarında insanlar gibi kendi dilleri ile iletişim kurarak tüm süreçlerin verimliliğinde artış olacağı düşüncesine katkıda bulunulmuştur. Makinelerin kendi dillerini üretebilmesi adına bir yaklaşım geliştirilmesi amacı ile çalışmada evrişimli derin sinir ağları yöntemi ile canlıların seslerini sınıflandırarak ayırt etmesi ve yeni sesler türetebilmesi hedeflenmiştir. Çalışmada, kullanılacak olan alfabenin ne olacağı sistem tarafından karar verilmesi sağlanmış; daha sonrasında Yinelemeli Yapay Sinir Ağları, Mel Frekans Cepstral Katsayısı ve Dinamik Zaman Çözgü metodolojileri ile birlikte kullanılarak benzer sesler oluşturulmuş ve canlılar ilgili sesler ile isimlendirilmiştir. Benzer çalışmalardan farklı olarak Kaggle açık veri deposundan “Audio Cats and Dogs” verisetindeki ses dosyaları üzerinden elde edilen MFCC görsel bir veri olarak kullanılmıştır. Bunun yanında CNN ağları ile model desteklenerek daha iyi performans elde edilmesi sağlanmıştır.}, number={3}, publisher={Dicle Üniversitesi}