TY - JOUR T1 - Molecular Docking Analysis on the Antiviral Effects of Curcumin on SARS-CoV-2 TT - Kurkuminin SARS-CoV-2 Üzerindeki Antiviral Etkileri Üzerine Moleküler Kenetlenme Analizi AU - Demirag, A. Demet AU - Çelik, Sefa AU - Özel, Ayşen AU - Akyüz, Sevim PY - 2022 DA - December DO - 10.55117/bufbd.1138678 JF - Bayburt Üniversitesi Fen Bilimleri Dergisi PB - Bayburt Üniversitesi WT - DergiPark SN - 2667-579X SP - 223 EP - 228 VL - 5 IS - 2 LA - en AB - The structural preferences of curcumin (C21H20O6) molecule were analyzed byMMFF method using Spartan06 program and the most stable geometry wasdetermined. To evaluate the effects of curcumin on SARS-CoV-2, the moleculardocking studies have been done on the spike glycoprotein and the apo/holo forms ofthe SARS-CoV-2 major protease enzyme (Mpro). The binding affinities and bindingmodes of curcumin targeted to the SARS-CoV-2 proteins were determined. It wasdiscovered that curcumin had binding affinities of -7.3, -5.7, and -7.6 kcal/mol to theapo and holo forms of the major protease enzyme (Mpro) and spike glycoprotein,respectively. The findings suggested that curcumin could be a useful therapeuticagent for COVID-19 treatment. KW - COVID-19 KW - Curcumin KW - Anti-inflammatory KW - Conformation analysis KW - Molecular Docking N2 - Kurkumin (C21H20O6) molekülünün yapısal tercihleri Spartan06 programı kullanılarak MMFF yöntemi ile analiz edilmiş ve en kararlı geometri belirlenmiştir. Kurkuminin SARS-CoV-2 üzerindeki etkilerini değerlendirmek için, SARS-CoV-2 ana proteaz enziminin (Mpro) apo/holo formları ve spike glikoprotein ile moleküler kenetlenme çalışmaları yapılmıştır. SARS-CoV-2 proteinlerini hedefleyen kurkuminin bağlanma afiniteleri ve bağlanma modları belirlenmiştir. Kurkuminin ana proteaz enziminin (Mpro) apo ve holo formlarına ve spike glikoproteine bağlanma afiniteleri sırasıyla -7.3, -5.7 ve -7.6 kcal/mol olarak bulunmuştur. Sonuçlar, kurkuminin COVID-19 tedavisi için potansiyel bir terapötik ajan olabileceğini göstermiştir. CR - [1] H. Gopinath and K. Karthikeyan, “Turmeric: A condiment, cosmetic and cure,” Indian Journal of Dermatology, Venereology and Leprology, vol. 84, no. 1, pp. 16, 2018. CR - [2] S. Hewlings and D. Kalman, “Curcumin: A Review of Its’ Effects on Human Health,” Foods, vol. 6, no. 10, pp. 92, 2017. CR - [3] J. Tabeshpour, M. Hashemzaei, and A. Sahebkar, “The regulatory role of curcumin on platelet functions,” Journal of Cellular Biochemistry, vol. 119, no. 11, pp. 8713–8722, 2018. CR - [4] A. Ali and A. C. Banerjea, “Curcumin inhibits HIV-1 by promoting Tat protein degradation,” Scientific Reports, vol. 6, no. 1, 2016. CR - [5] N. Zhang, H. Li, J. Jia, and M. He, “Anti-inflammatory effect of curcumin on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse,” Cellular Immunology, vol. 298, no. 1–2, pp. 88– 95, 2015. CR - [6] M. S. Karimian, M. Pirro, M. Majeed, and A. Sahebkar, “Curcumin as a natural regulator of monocyte chemoattractant protein-1,” Cytokine & Growth Factor Reviews, vol. 33, pp. 55–63, 2017. CR - [7] F. Zahedipour et al., “Potential effects of curcumin in the treatment of COVID ‐19 infection,” Phytotherapy Research, 2020. CR - [8] H. Noor, A. Ikram, T. Rathinavel, S. Kumarasamy, M. Nasir Iqbal, and Z. Bashir, “Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 – a computational modeling,” Journal of Biomolecular Structure and Dynamics, pp. 1–16, 2021. CR - [9] R. Jäger, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, and J. M. Wilson, “Comparative absorptionof curcumin formulations,” Nutrition Journal, vol. 13, no. 1, 2014. CR - [10] L. Sun et al., “Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling,” PLoS ONE, vol. 7, no. 2, pp. e30802, 2012. CR - [11] J. W. Schoggins and C. M. Rice, “Interferon-stimulated genes and their antiviral effector functions,” Current Opinion in Virology, vol. 1, no. 6, pp. 519–525, 2011. CR - [12] D. Ting et al., “Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin,” ACS Applied Nano Materials, vol. 1, no. 10, pp. 5451–5459, 2018. CR - [13] Y. Imai et al., “Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury,” Cell, vol. 133, no. 2, pp. 235–249, 2008. CR - [14] S. Rong et al., “Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity,” Phytomedicine, vol. 19, no. 6, pp. 545–550, 2012. CR - [15] M. Head-Gordon and et al. et al., “Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package,” ChemInform, vol. 37, no. 39, 2006. CR - [16] T. A. Halgren, “Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94,” Journal of Computational Chemistry, vol. 17, no. 5–6, pp. 553–586, 1996. CR - [17] A. Jurcik et al., “CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories,” Bioinformatics, vol. 34, no. 20, pp. 3586–3588, 2018. CR - [18] O. Trott and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, 2009. CR - [19] B. Zhang, Y. Zhao, Z. Jin, X. Liu, H. Yang, and Z. Rao, “The crystal structure of COVID-19 main protease in apo form,” 2020. CR - [20] V. Nath, A. Rohini, and V. Kumar, “Identification of Mpro inhibitors of SARS-CoV-2 using structure based computational drug repurposing,” Biocatalysis and Agricultural Biotechnology, vol. 37, pp. 102178, 2021. CR - [21] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler, “Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein,” Cell, vol. 183, no. 6, pp. 1735, 2020. UR - https://doi.org/10.55117/bufbd.1138678 L1 - https://dergipark.org.tr/tr/download/article-file/2518334 ER -