TY - JOUR T1 - Bitki Bazlı Adsorbent Üzerine Boyar Madde Adsorpsiyonu: Bir Optimizasyon Çalışması TT - Adsorption of a Dye on Plant Based Adsorbent: An Optimization Study AU - Kavcı, Erbil PY - 2023 DA - May Y2 - 2023 DO - 10.35193/bseufbd.1179273 JF - Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi PB - Bilecik Şeyh Edebali Üniversitesi WT - DergiPark SN - 2458-7575 SP - 121 EP - 128 VL - 10 IS - 1 LA - tr AB - Bu çalışmada Rumex Crispus L. bitki gövdelerinden elde edilen adsorbent üzerine metilen mavisi adsorbe edilmiştir. Adsorpsiyon şartlarını optimize edebilmek için Taguchi Deney tasarımı kullanılmıştır. Çalışmada optimize edilen şartlar: sıcaklık, başlangıç boya konsantrasyonu, pH ve tanecik boyutudur. Parametrelerin ne ölçüde etkin olduğunu belirlemek için ise ANOVA analizi yapılmıştır. Mevcut çalışmadan elde edilen sonuçlardan optimum şartlar; sıcaklık, 20 oC, başlangıç boya konsantrasyonu,120 mg/L, pH=6.5 ve tanecik boyutu 0.425 mm olarak tespit edilmiştir. Optimum şartlarda tahmin edilen qt miktarı 65.58 mg/g olarak hesaplanmıştır. ANOVA analizi ile adsorpsiyon prosesine en önemli katkıyı %62.8 ile pH, %29.6 ile başlangıç boya konsantrasyonu, %5.4 ile sıcaklık ve %2.3 ile tanecik boyutu sağlamıştır. KW - Adsorpsiyon KW - Metil Mavisi KW - Optimizasyon KW - Taguchi Metodu KW - ANOVA N2 - In this study, methylene blue was adsorbed using the adsorbent obtained from Rumex Crispus L. plant stems. Taguchi Experiment design was used to optimize the adsorption conditions. The optimized conditions in the study are temperature, initial concentration, pH, and particle size. ANOVA analysis was performed to determine the effectiveness of the parameters. From the results, optimum levels were determined as 20 oC for temperature, 120 mg/L for concentration, pH=6.5, -0.425 mm for particle size. The estimated amount of qt under optimum conditions was calculated as 65.58 mg/g. The most important contribution to the adsorption process by ANOVA analysis was pH with 62.8%, initial concentration with 29.6%, temperature with 5.4%, and particle size with 2.3%. CR - Volkan, N., & Ozmetı̇n, E. (2022). Maxilon Blue GRL Boyar Maddesinin İllit Kil Minerali İle Gideriminin Optimizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(1), 216-232. https://doi.org/10.29130/dubited.863992 CR - Namal, O. O., & Kalipci, E. (2019). Adsorption kinetics of methylene blue using alkali and microwave-modified apricot stones. Separation Science and Technology, 54(11), 1722-1738. https://doi.org/10.1080/01496395.2018.1541469 CR - Boughrara, L., Zaoui, F., Guezzoul, M., Sebba, F. Z., Bounaceur, B., & Kada, S. O. (2022). New alginic acid derivatives ester for methylene blue dye adsorption: Kinetic, isotherm, thermodynamic, and mechanism study. International Journal of Biological Macromolecules, 205, 651-663. https://doi.org/10.1016/j.ijbiomac.2022.02.087 CR - Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060 CR - Özdemir, Ç. S. (2019). Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pinecone. Separation Science and Technology, 0(0), 1-9. https://doi.org/10.1080/01496395.2019.1565769 CR - Siddiqui, S. I., Rathi, G., & Chaudhry, S. A. (2018). Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies. Journal of Molecular Liquids, 264, 275-284. https://doi.org/10.1016/j.molliq.2018.05.065 CR - Jawad, A. H., Abdulhameed, A. S., & Mastuli, M. S. (2020). Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 14(1), 305-313. https://doi.org/10.1080/16583655.2020.1736767 CR - Afroze, S., Sen, T. K., Ang, M., & Nishioka, H. (2016). Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: Equilibrium, kinetics, thermodynamics and mechanism. Desalination and Water Treatment, 57(13), 5858-5878. https://doi.org/10.1080/19443994.2015.1004115 CR - Tang, Y., Zhao, Y., Lin, T., Li, Y., Zhou, R., & Peng, Y. (2019). Adsorption performance and mechanism of methylene blue by H3PO4- modified corn stalks. Journal of Environmental Chemical Engineering, 7(6), 103398. https://doi.org/10.1016/j.jece.2019.103398 CR - Nayak, A. K., & Pal, A. (2020). Utilization of Lignocellulosic Waste for Acridine Orange Uptake: Insights into Multiparameter Isotherms Modeling with ANN-Aimed Formulation. Journal of Environmental Engineering, 146(9), 04020096. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001762 CR - Khare, P., & Kumar, A. (2012). Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: Process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Applied Water Science, 2(4), 317-326. https://doi.org/10.1007/s13201-012-0047-0 CR - Rezaei, H., Haghshenasfard, M., & Moheb, A. (2017). Optimization of dye adsorption using Fe3O4 nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science & Technology, 35(1-2), 55-71. https://doi.org/10.1177/0263617416667508 CR - Yılmaz, C. E., Aslani, M. A. A., & Aslani, C. K. (2019). Helianthus Annuus Çekirdeği Kabuklarında Toryum Sorpsiyonunun Taguchi Metodu Kullanılarak İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(63), 741-747. CR - Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S. (2017). Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523-S3531. https://doi.org/10.1016/j.arabjc.2014.02.019 CR - Durán-Jiménez, G., Hernández-Montoya, V., Montes-Morán, M. A., Bonilla-Petriciolet, A., & Rangel-Vázquez, N. A. (2014). Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method. Microporous and Mesoporous Materials, 199, 99-107. https://doi.org/10.1016/j.micromeso.2014.08.013 CR - Pundir, R., Chary, G. H. V. C., & Dastidar, M. G. (2018). Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resources and Industry, 20, 83-92. https://doi.org/10.1016/j.wri.2016.05.001 CR - Bayrak, B., Laçin, O., & Saraç, H. (2015). Ham Manyezit Cevherinin Glukonik Asit Çözeltilerinde çözündürülmeisnin Optimizasyonu. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik, 16(2), 195-202. https://doi.org/10.18038/btd-a.35162 CR - Zolgharnein, J., & Rastgordani, M. (2018). Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. Journal of Molecular Liquids, 262, 405-414. https://doi.org/10.1016/j.molliq.2018.04.038 CR - Santra, D., Joarder, R., & Sarkar, M. (2014). Taguchi design and equilibrium modeling for fluoride adsorption on cerium loaded cellulose nanocomposite bead. Carbohydrate Polymers, 111, 813-821. https://doi.org/10.1016/j.carbpol.2014.05.040 CR - Benkaddour, S., Slimani, R., Hiyane, H., El Ouahabi, I., Hachoumi, I., El Antri, S., & Lazar, S. (2018). Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: Kinetic and isotherm studies. Sustainable Chemistry and Pharmacy, 10, 16-21. https://doi.org/10.1016/j.scp.2018.08.003 CR - Mashkoor, F., & Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315-327. https://doi.org/10.1016/j.molliq.2018.10.119 CR - Kavci, E. (2021). Malahit yeşili boyar maddesinin çam kozalağı ile adsorpsiyonunun Taguchi metodu ile incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 129-135. https://doi.org/10.21205/deufmd.2021236711 CR - Kazemi, S. Y., Biparva, P., & Ashtiani, E. (2016). Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: Equilibrium and kinetic studies. Ecological Engineering, 88, 82-89. https://doi.org/10.1016/j.ecoleng.2015.12.020 UR - https://doi.org/10.35193/bseufbd.1179273 L1 - http://dergipark.org.tr/tr/download/article-file/2667393 ER -