TY - JOUR T1 - Virusların Duyarlı Konak Hücreleri Enfekte Etmek İçin Kullandıkları Bazı Reseptörler TT - Certain receptors used by viruses to infect susceptible host cells AU - Kaplan, Oğuzhan PY - 2022 DA - December JF - Antakya Veteriner Bilimleri Dergisi JO - Antakya Vet. Bil. Derg. (J. Antakya Vet. Sci.) PB - Hatay Mustafa Kemal Üniversitesi WT - DergiPark SN - 2979-9805 SP - 13 EP - 22 VL - 1 IS - 1 LA - tr AB - Virus-reseptör etkileşimleri, doku tropizmi ve viral patogenezde önemli bir rol oynamaktadır. Bir virus ve onun konakçı hücresi arasındaki etkileşim, virus partikülünün hücre yüzeyindeki spesifik reseptörlere bağlanmasıyla başlar. Bağlanma mekanizmasına aracılık eden viral tutunma proteinleri, önemli bir role sahiptir. Viral tutunma proteini, hücre yüzeyindeki reseptör ile etkileşime girerek konakçı hücrelerin kilidini açan “anahtar” olarak görülebilir. Bu anahtar-kilit model etkileşimleri, virusların konakçı hücrelerine başarılı bir şekilde girmesinde kritik öneme sahiptir. Yüzey glikoproteinleri, kanyon gibi hücresel reseptörlere bağlanan bağlayıcı cepler, uzatılmış halkalar içeren viral kapsid proteinleri viral bağlanma mekanizmasının önemli parçalarındandır. Bu bağlanma mekanizması sırasında virus ve hücre arasında çoklu etkileşimler meydana gelmektedir. Viruslar bir veya daha fazla reseptöre bağlanmak, plazma membran bariyerini aşmak ve konak hücre içerisine girmek için çeşitli stratejiler kullanmaktadır. Enfeksiyonlarda viruslar reseptörleri kullanırken belirli molekül sınıflarını hedeflediği yapılan çalışmalarla tespit edilmiştir. İntegrinler, nektinler ve immunoglobulin üst ailesi üyeleri, virusların yaygın olarak kullandığı reseptörlerden bazılarıdır. Ayrıca virus-konak etkileşim mekanizmalarının açıklığa kavuşturulması açısından keşfedilmeyi bekleyen birçok reseptör vardır. Virolojinin en dinamik alanlarından biri, konak hücreler üzerindeki bu virus reseptörlerinin tanımlanmasıyla ilgilidir. Bu derlemede, veteriner hekimlikte öne çıkanlar başta olmak üzere bazı virus aileleri tarafından konakçı hücreler üzerinde hangi reseptörlerin kullanıldığı güncel çalışmalar ışığında ortaya koyulması amaçlanmıştır. KW - Epitop KW - hücre KW - glikoprotein KW - reseptör KW - virus konak etkileşimleri N2 - Virus-host interactions are crucial in viral pathogenesis and tissue tropism. The interaction between a virus and its host cell begins with the binding of the virus particle to specific receptors on the cell surface. Viral binding proteins that mediate the binding mechanism play an important role. The viral attachment protein can be seen as the "key" that unlocks host cells by interacting with the receptor on the cell surface. These key-lock model interactions are critical to the successful entry of viruses into host cells. Surface glycoproteins, binding pockets that bind to cellular receptors such as canyons, and viral capsid proteins containing extended loops are important parts of the viral attachment mechanism. During this attachment mechanism, multiple interactions occur between the virus and the cell. Viruses use a variety of strategies to bind to one or more receptors, cross the plasma membrane barrier, and enter the host cell. The viral attachment protein can be seen as the "key" that unlocks host cells by interacting with the receptor on the cell surface. These key-lock model interactions are critical to the successful entry of viruses into host cells. It has been determined by studies that viruses target certain classes of molecules while using receptors in infections. Integrins, nectins, and members of the immunoglobulin superfamily are some of the receptors commonly used by viruses. Furthermore, many receptors are awaiting discovery in order to clarify the virus-host interaction mechanisms. The identification of these viral receptors on host cells is one of the most active fields of virology. In this review, it is aimed to reveal which receptors on host cells are used by some virus families, especially those that are prominent in veterinary medicine, in the light of current studies. CR - Adedeji, A. O., Barr, B., Gomez-Lucia, E., & Murphy, B. (2013). A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses, 5(8), 2005-2018. https://doi.org/10.3390/v5082005 CR - Albertini, A. A., Baquero, E., Ferlin, A., & Gaudin, Y. (2012). Molecular and cellular aspects of rhabdovirus entry. Viruses, 4(1), 117-139. https://doi.org/10.3390/v4010117 CR - Aranda‐Rivera, AK., Cruz‐Gregorio, A., Briones‐Herrera, A., & Pedraza‐Chaverri, J. (2021). Regulation of autophagy by high- and low-risk human papillomaviruses. Reviews in Medical Virology, 31(2), e2169. https://doi.org/10.1002/rmv.2169 CR - Arias, C.F., & López, S. (2021). Rotavirus cell entry: not so simple after all. Current Opinion in Virology, 48, 42-48. https://doi.org/10.1016/j.coviro.2021.03.011 CR - Arias, C. F., Silva-Ayala, D., & Lopez, S. (2015). Rotavirus entry: a deep journey into the cell with several exits. Journal of Virology, 89, 890-893. https://doi.org/10.1128/JVI.01787-14 CR - Bai, L., Sato, H., Kubo, Y., Wada, S., & Aida, Y. (2019). CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. The FASEB Journal, 33(12), 14516-14527. https://doi.org/10.1096/fj.201901528R CR - Blacklaws, B. A. (2012). Small ruminant lentiviruses: immunopathogenesis of Visna-Maedi and caprine arthritis and encephalitis virus. Comparative Immunology, Microbiology and Infectious Diseases, 35(3), 259-269. https://doi.org/10.1016/j.cimid.2011.12.003 CR - Borzacchiello, G., Russo, V., Gentile, F., Roperto, F., Venuti, A., Nitsch, L., Campo, M. S., & Roperto, S. (2006). Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary bladder tumours. Oncogene, 25, 1251-1260. https://doi.org/10.1038/sj.onc.1209152 CR - Böhm, R., Fleming, F. E., Maggioni, A., Dang, V. T., Holloway, G., Coulson, B. S., von Itzstein, M., & Haselhorst, T. (2015). Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nature Communications, 6(1), 1-12. https://doi.org/10.1038/ncomms6907 CR - Cheng, Y. R., Li, X., Zhao, X., & Lin, H. (2021). Cell Entry of Animal Coronaviruses. Viruses, 13(10), 1977. https://doi.org/10.3390/v13101977 CR - Coffin, J., Blomberg, J., Fan, H., Gifford, R., Hatziioannou, T., Lindemann, D., Mayer, J., Stoye, J., Tristem, M., & Johnson, W. (2021). ICTV Virus Taxonomy Profile: Retroviridae 2021. Journal of General Virology, 102(12). 10.1099/jgv.0.001712 CR - Coil, D. A., & Miller, A. D. (2004). Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. Journal of Virology, 78, 10920-10926. https://doi.org/10.1128/JVI.78.20.10920-10926.2004 CR - Cotmore, S. F., Agbandje-McKenna, M., Chiorini, J. A., Mukha, D. V., Pintel, D. J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D., & Davison, A. J. (2014). The family Parvoviridae. Archives of Virology, 159, 1239-1247. https://doi.org/10.1007/s00705-013-1914-1 CR - Coulson, B. S. (2015). Expanding diversity of glycan receptor usage by rotaviruses. Current Opinion in Virology, 15, 90-96. https://doi.org/10.1016/j.coviro.2015.08.012 CR - Couñago, R. M., Knapp, K. M., Nakatani, Y., Fleming, S. B., Corbett, M., Wise, L. M., Mercer, A. A., & Krause, K. L. (2015). Structures of Orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure, 23(7), 1199-1213. https://doi.org/10.1016/j.str.2015.04.023 CR - Crespo, H., Reina, R., Glaria, I., Ramírez, H., de Andrés, X., Jáuregui, P., Luján, L., Martínez-Pomares, L., Amorena, B., & de Andrés, D. F. (2011). Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection. Veterinary Research, 42(1), 1-10. https://doi.org/10.1186/1297-9716-42-28 CR - De Salort, J., Sintes, J., Llinàs, L., Matesanz-Isabel, J., & Engel, P. (2011). Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunology Letters, 134, 129-136. https://doi.org/10.1016/j.imlet.2010.09.021 CR - Di Teodoro, G., Bortolami, A., Teodori, L., Leone, A., D’Alterio, N., Malatesta, D., Rosamilia, A., Colaianni, M. L., Petrini, A., Terregino, C., Savini, G., Bonfante, F., & Lorusso, A. (2019). Replication kinetics and cellular tropism of emerging reoviruses in sheep and swine respiratory ex vivo organ cultures. Veterinary microbiology, 234, 119-127. https://doi.org/10.1016/j.vetmic.2019.06.001 CR - Eisenberg, R. J., Atanasiu, D., Cairns, T. M., Gallagher, J. R., Krummenacher, C., & Cohen, G. H. (2012). Herpes virus fusion and entry: A story with many characters. Viruses, 4, 800-832. https://doi.org/10.3390/v4050800 CR - Etessami, R., Conzelmann, K. K., Fadai-Ghotbi, B., Natelson, B., Tsiang, H., & Ceccaldi, P. E. (2000). Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. Journal of General Virology, 81(9), 2147-2153. https://doi.org/10.1099/0022-1317-81-9-2147 CR - Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013). LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proceedings of the National Academy of Sciences, 110, 7306-7311. https://doi.org/10.1073/pnas.1214441110 CR - Fothergill, T., & McMillan, N. A. (2006). Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology, 352, 319-328. CR - Gomez-Lucia. E., Barquero, N., & Domenech, A. (2018). Maedi-Visna virus: current perspectives. Veterinary Medicine: Research and Reports, 9, 11-21. 21. 10.2147/VMRR.S136705 CR - Graham, K. L., Halasz, P., Tan, Y., Hewish, M. J., Takada, Y., Mackow, E. R., Robinson, M. K., & Coulson, B. S. (2003). Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αxβ2 and αvβ3 by using VP7 during cell entry. Journal of Virology, 77, 9969-9978. https://doi.org/10.1128/JVI.77.18.9969-9978.2003 CR - Gravitt, P. E., & Winer, R. L. (2017). Natural history of HPV infection across the lifespan: role of viral latency. Viruses, 9(10), 1-10. https://doi.org/10.3390/v9100267 CR - Jindrák, L., & Grubhoffer, L. (1999). Animal virus receptors. Folia Microbiologica, 44(5), 467-486. https://doi.org/10.1007/BF02816247 CR - Katze, M. G., Korth, M. J., Law, G. L., & Nathanson, N. (2015). Viral pathogenesis: from basics to systems biology (pp. 29-30). Academic Press. CR - Kawabata, H. (2019). Transferrin and transferrin receptors update. Free Radical Biology and Medicine, 133, 46-54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037 CR - Kjellén, L., & Lindahl, U. (1991). Proteoglycans: structuresand interactions. Annual Review of Biochemistry, 60, 443-475. https://doi.org/10.1146/annurev.bi.60.070191.002303 CR - Kurth, M., Lolicato, F., Sandoval-Perez, A., Amaya-Espinosa, H., Teslenko, A., Sinning, I., Beck, R., Brügger, B., & Aponte-Santamaría, C. (2020). Cholesterol Localization around the Metabotropic Glutamate Receptor 2. The Journal of Physical Chemistry B, 124(41), 9061-9078. https://doi.org/10.1021/acs.jpcb.0c05264 CR - Lafon, M. (2005). Rabies virus receptors. Journal of Neurovirology, 11, 82-87. https://doi.org/10.1080/13550280590900427 CR - Luan, Y., & Xu, W. (2007). The Structure and Main Functions of Aminopeptidase N. Current Medicinal Chemistry, 14, 639-647. https://doi.org/10.2174/092986707780059571 CR - Mandai, K., Rikitake, Y., Mori, M., & Takai, Y. (2015). Nectins and nectin-like molecules in development and disease. Current Topics in Developmental Biology, 112, 197-231. https://doi.org/10.1016/bs.ctdb.2014.11.019 CR - Manoj, S., Jogger, C. R., Myscofski, D., Yoon, M., & Spear, P. G. (2004). Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proceedings of the National Academy of Sciences, 101, 12414-12421. https://doi.org/10.1073/pnas.0404211101 CR - Maurer, K., Krey, T., Moennig, V., Thiel, H. J., & Rümenapf, T. (2004). CD46 is a cellular receptor for bovine viral diarrhea virus. Journal of Virology, 78(4), 1792-1799. https://doi.org/10.1128/JVI.78.4.1792-1799.2004 CR - Minardi da Cruz, J. C., Singh, D. K., Lamara, A., & Chebloune, Y. (2013). Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses, 5(7), 1867-1884. https://doi.org/10.3390/v5071867 CR - Moser, B., & Willimann, K. (2004). Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases, 63, 84-89. http://dx.doi.org/10.1136/ard.2004.028316 CR - Navaratnarajah, C. K., Generous, A. R., Yousaf, I., & Cattaneo, R. (2020). Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Journal of Biological Chemistry, 295(9), 2771-2786. https://doi.org/10.1074/jbc.REV119.009961 CR - Neufeldt, C. J., Cortese, M., Acosta, E. G., & Bartenschlager, R. (2018). Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology, 16(3), 125-142. https://doi.org/10.1038/nrmicro.2017.170 CR - Ogita, H., & Takai, Y. (2006). Nectins and nectin-like molecules: Roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life, 58(5-6), 334-343. https://doi.org/10.1080/15216540600719622 CR - Ozaki-Kuroda, K., Nakanishi, H., Ohta, H., Tanaka, H., Kurihara, H., Mueller, S., Irie, K., Ikeda, W., Sasaki, T., Wimmer, E., Nishimune, Y., & Takai, Y. (2002). Nectin couples cell–cell adhesion and the actin scaffold at heterotypic testicular junctions. Current Biology, 12, 1145-1150. https://doi.org/10.1016/S0960-9822(02)00922-3 CR - Parker, J. S. L., Murphy, W. J., Wang, D., O'Brien, S. J., & Parrish, C. R. (2001). Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. Journal of Virology, 75, 3896-3902. https://doi.org/10.1128/JVI.75.8.3896-3902.2001 CR - Pratakpiriya, W., Ping Teh A. P., Radtanakatikanon, A., Pirarat, N., Thi Lan, N., Takeda, M., Techangamsuwan, S., & Yamaguchi, R. (2017). Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Scientific Reports, 7, 349. https://doi.org/10.1038/s41598-017-00375-6 CR - Reguera, J., Mudgal, G., Santiago, C., & Casasnovas, J. M. (2014). A structural view of coronavirus-receptor interactions. Virus Research, 194, 3-15. https://doi.org/10.1016/j.virusres.2014.10.005 CR - Reymond, N., Fabre, S., Lecocq, E., Adelaïde, J., Dubreuil, P., & Lopez, M. (2001). Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. Journal of Biological Chemistry, 276(46), 43205-43215. https://doi.org/10.1074/jbc.M103810200 CR - Rima, B., Balkema-Buschmann, A., Dundon, W. G., Duprex, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R., Lee, B., Rota, P., Wang, L., & Consortium, I. R. (2019). ICTV virus taxonomy profile. Paramyxoviridae. Journal of General Virology, 100 (12), 1593-1594. 10.1099/jgv.0.001328 CR - Roche, S., Albertini, A. A., Lepault, J., Bressanelli, S., & Gaudin, Y. (2008). Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cellular and Molecular Life Sciences, 65, 1716-1728. https://doi.org/10.1007/s00018-008-7534-3 CR - Roodman, G. D. (2009). Osteoclasts pump iron. Cell Metabolism, 9(5), 405-406. https://doi.org/10.1016/j.cmet.2009.04.005 CR - Ruiz-Sáenz, J., Goez, Y., Tabares, W., & López-Herrera, A. (2009). Cellular receptors for foot and mouth disease virus. Intervirology, 52(4), 201-212. https://doi.org/10.1159/000226121 CR - Saltık, H. S., & Kale, M. (2017). Mavidil Virus Hastalığı. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 5(1), 32-44. https://doi.org/10.24998/maeusabed.284387 CR - Saltık, H. S., & Kale, M. (2022). Rapid molecular detection and isolation of Canine Distemper Virus in naturally infected dogs. Ankara Üniversitesi Veteriner Fakültesi Dergisi. https://doi.org/10.33988/auvfd.846475 CR - Saltik, H., & Kale, M. (2020): Evaluation of infection with N protein-specific Immunoglobulin M and G in naturally occurring distemper in dogs. Veterinární Medicína, 65: 168-173. https://doi.org/10.17221/31/2019-VETMED CR - Saltik, H. S., Kale, M., & Atli, K. (2022). First molecular evidence of border disease virus in wild boars in Turkey. Veterinary Research Communications, 46(1), 243-250. https://doi.org/10.1007/s11259-021-09852-w CR - Schnell, M. J., McGettigan, J. P., Wirblich, C., & Papaneri, A. (2010). The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology, 8(1), 51-61. https://doi.org/10.1038/nrmicro2260 CR - Shuai, L., Wang, J., Zhao, D., Wen, Z., Ge, J., He, X., Wang, X., & Bu, Z. (2020). Integrin β1 promotes peripheral entry by Rabies virus. Journal of Virology, 94(2), e01819-19. https://doi.org/10.1128/JVI.01819-19 CR - Smith, D. B., Meyers, G., Bukh, J., Gould, E. A., Monath, T., Muerhoff, A. S., Pletnev, A., Rico-Hesse, R., Stapleton, J. T., Simmonds, P., & Becher, P. (2017). Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 98, 2106-2112. 10.1099/jgv.0.000873 CR - Sonowal, J., Patel, C. L., Gandham, R. K., Sajjanar, B., Khan, R. I. N., Praharaj, M. R., Malla, W. A., Kumar, D., Dev, K., Barkathullah, N., Bharali, K., Dubey, A., Lalita, D., Zafir, I., Mishra, B. P., & Mishra, B. (2021). Genome-wide expression analysis reveal host genes involved in immediate-early infections of different sheeppox virus strains. Gene, 801, 145850. https://doi.org/10.1016/j.gene.2021.145850 CR - Spear, P. G., Eisenberg, R. J., & Cohen, G. H. (2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology, 275, 1-8. https://doi.org/10.1006/viro.2000.0529 CR - Spear, P. G., & Longnecker, R. (2003). Herpesvirus entry: An update. Journal of Virology, 77, 10179-10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003 CR - Stonos, N., Wootton, S. K., & Karrow, N. (2014). Immunogenetics of small ruminant lentiviral infections. Viruses, 6(8), 3311-3333. https://doi.org/10.3390/v6083311 CR - Stuetzer, B., & Hartmann, K. (2014). Feline parvovirus infection and associated diseases. The Veterinary Journal, 201(2), 150-155. https://doi.org/10.1016/j.tvjl.2014.05.027 CR - Su, A., Fu, Y., Meens, J., Yang, W., Meng, F., Herrler, G., & Becher, P. (2021). Infection of polarized bovine respiratory epithelial cells by bovine viral diarrhea virus (BVDV). Virulence, 12(1), 177-187. https://doi.org/10.1080/21505594.2020.1854539 CR - Suchowski, M., Eschbaumer, M., Teifke, J. P., & Ulrich, R. (2021). After nasopharyngeal infection, foot-and-mouth disease virus serotype A RNA is shed in bovine milk without associated mastitis. Journal of Veterinary Diagnostic Investigation, 33(5), 997-1001. https://doi.org/10.1177/10406387211022467 CR - Sytnyk, V., Leshchyns’ka, I., & Schachner, M. (2017). Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends in Neurosciences, 40(5), 295-308. https://doi.org/10.1016/j.tins.2017.03.003 CR - Tatsuo, H., Ono, N., Tanaka, K., & Yanagi, Y. (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature, 406, 893-897. https://doi.org/10.1038/35022579 CR - Tiwari, V., Clement, C., Xu, D., Valyi-Nagy, T., Yue, B. Y., Liu, J., & Shukla, D. (2006). Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. Journal of Virology, 80, 8970-8980. https://doi.org/10.1128/JVI.00296-06 CR - Tuthill, T. J., Rowlands, D. J., & Killington, R. A. (2007). Picornavirus entry. Future Virology, 2(4), 343-351. https://doi.org/10.2217/17460794.2.4.343 CR - Veillette, A., & Latour, S. (2003). The SLAM family of immune-cell receptors. Current Opinion in Immunology, 15, 277-285. https://doi.org/10.1016/S0952-7915(03)00041-4 CR - Villa, T. G., Feijoo-Siota, L., Rama, J. L. R., & Ageitos, J. M. (2017). Antivirals against animal viruses. Biochemical Pharmacology, 133, 97-116. https://doi.org/10.1016/j.bcp.2016.09.029 CR - Wang, J., Wang, Z., Liu, R., Shuai, L., Wang, X., Luo, J., Wang, C., Chen, W., Wang, X., Ge, J., He, X., Wen, Z., & Bu, Z. (2018). Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathogens, 14(7), e1007189. https://doi.org/10.1371/journal.ppat.1007189 CR - Wasik, B. R., Barnard, K. N., & Parrish, C. R. (2016). Effects of sialic acid modifications on virus binding and infection. Trends in Microbiology, 24(12), 991-1001. https://doi.org/10.1016/j.tim.2016.07.005 CR - Wu, W., & Roy, P. (2021). Sialic acid binding sites in VP2 of bluetongue virus and their use during virus entry. Journal of Virology, JVI-01677. https://doi.org/10.1128/JVI.01677-21 CR - Zell, R. (2018). Picornaviridae-the ever-growing virus family. Archives of Virology, 163(2), 299-317. https://doi.org/10.1007/s00705-017-3614-8 CR - Zeltina, A., Bowden, T. A., & Lee, B. (2016). Emerging paramyxoviruses: receptor tropism and zoonotic potential. PLoS Pathogens, 12(2), e1005390. https://doi.org/10.1371/journal.ppat.1005390 CR - Zhang, N., Kisiswa, L., Ramanujan, A., Li, Z., Sim, E. W., Tian, X., Yuan, W., Ibáñez, C. F., & Lin, Z. (2021). Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. Journal of Biological Chemistry, 297(2), 1-11. https://doi.org/10.1016/j.jbc.2021.100916 UR - http://dergipark.org.tr/tr/pub/antakyavet/issue//1181858 L1 - http://dergipark.org.tr/tr/download/article-file/2678420 ER -