TY - JOUR T1 - Investigation of the Thermal Properties of Cu-based Shape Memory Alloy TT - Investigation of the Thermal Properties of Cu-based Shape Memory Alloy AU - Turan, Neslihan PY - 2023 DA - March DO - 10.29109/gujsc.1196035 JF - Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji JO - GUJS Part C PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9526 SP - 210 EP - 221 VL - 11 IS - 1 LA - en AB - This study aims to investigate the thermal properties of the phase transformation that may occur with the effect of temperature in Cu-14.70wt.%Al-4.72wt.%Ni shape memory alloy. The sample was annealed at 1203 K for 30 min in an argon atmosphere and then cooled rapidly in salt-ice water. By using Differential Scanning Calorimetry (DSC), the martensitic phase transformation parameters of the sample were found. The activation energy required for these transformations was calculated using the Kissinger, Augis-Bennett, and Takhor methods. Thermogravimetric Analysis (TGA) measurements investigated the mass changes that may occur with the effect of temperature. Surface morphology was analyzed using an optical micrograph. KW - thermal properties KW - shape memory alloy KW - activation energy N2 - This study aims to investigate the thermal properties of the phase transformation that may occur with the effect of temperature in Cu-14.70wt.%Al-4.72wt.%Ni shape memory alloy. The sample was annealed at 1203 K for 30 min in an argon atmosphere and then cooled rapidly in salt-ice water. By using Differential Scanning Calorimetry (DSC), the martensitic phase transformation parameters of the sample were found. The activation energy required for these transformations was calculated using the Kissinger, Augis-Bennett, and Takhor methods. Thermogravimetric Analysis (TGA) measurements investigated the mass changes that may occur with the effect of temperature. Surface morphology was analyzed using an optical micrograph. CR - 1. Nishiyama Z, Fine ME, Meshii M, Wayman CM (1978) Martensitic transformation. Academic Press, London CR - 2. Perkins J (2000) Shape Memory. Springer Science+Business Media, LLC CR - 3. Van Humbeeck J (2001) Shape memory alloys: A material and a technology. Adv Eng Mater 3:837–850. https://doi.org/10.1002/1527-2648(200111)3:11 <837::AID-ADEM837>3.0.CO;2-0 CR - 4. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084 CR - 5. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Reports 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001 CR - 6. Gojić M, Vrsalović L, Kožuh S, et al (2011) Electrochemical and microstructural study of Cu-Al-Ni shape memory alloy. J Alloys Compd 509:9782–9790. https://doi.org/10.1016/j.jallcom.2011.07.107 CR - 7. Alaneme KK, Anaele JU, Okotete EA (2021) Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review. Sci African 12:. https://doi.org/10.1016/j.sciaf.2021.e00760 CR - 8. Canbay CA, Karagoz Z (2013) Effects of Annealing Temperature on Thermomechanical Properties of Cu-Al-Ni Shape Memory Alloys. Int J Thermophys 34:1325–1335. https://doi.org/10.1007/s10765-013-1486-z CR - 9. Niedbalski S, Durán A, Walczak M, Ramos-Grez JA (2019) Laser-assisted synthesis of Cu-Al-Ni shape memory alloys: Effect of nert gas pressure and Ni content. Materials (Basel) 12:. https://doi.org/10.3390/MA12050794 CR - 10. Ozbulut OE, Hurlebaus S, Desroches R (2011) Seismic response control using shape memory alloys: A review. J Intell Mater Syst Struct 22:1531–1549. https://doi.org/10.1177/1045389X11411220 CR - 11. Pereira EC, Matlakhova LA, Matlakhov AN, et al (2016) Reversible martensite transformations in thermal cycled polycrystalline Cu-13.7%Al-4.0%Ni alloy. J Alloys Compd 688:436–446. https://doi.org/10.1016/j.jallcom.2016.07.210 CR - 12. Payandeh Y, Mirzakhani B, Bakhtiari Z, Hautcoeur A (2022) Precipitation and martensitic transformation in polycrystalline CuAlNi shape memory alloy – Effect of short heat treatment. J Alloys Compd 891:162046. https://doi.org/10.1016/j.jallcom.2021.162046 CR - 13. Pushin VG, Kuranova NN, Svirid AE, et al (2022) Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives. Metals (Basel). 12 CR - 14. Lattanzi MG, Sozzetti A (2010) Gaia and the Astrometry of Giant Planets. Cambridge University Press, Cambridge 15. Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553. https://doi.org/10.1016/j.actamat.2010.09.057 CR - 16. Miyazaki S, Otsuka K (1989) Development of Shape Memory Alloys. ISIJ Int 29:353–377. https://doi.org/10.2355/isijinternational.29.353 CR - 17. Perkins J, Muesing WE (1983) MARTENSITIC TRANSFORMATION CYCLING EFFECTS IN Cu-Zn-Al SHAPE MEMORY ALLOYS. Metall Trans A, Phys Metall Mater Sci 14 A:33–36. https://doi.org/10.1007/BF02643734 CR - 18. Ortín J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36:1873–1889. https://doi.org/10.1016/0001-6160(88)90291-X CR - 19. Xu H, Tan S (1995) Calorimetric investigation of a Cu-Zn-Al alloy with two way shape memory. Scr Metall Mater 33:749–754. https://doi.org/10.1016/0956-716X(95)00269-2 20. Salzbrenner RJ, Cohen M (1979) On the thermodynamics of thermoelastic martensitic transformations. Acta Metall 27:739–748. https://doi.org/10.1016/0001-6160(79)90107-X CR - 21. Tong HC, Wayman CM (1975) Thermodynamics of thermoelastic martensitiC transformations. Acta Metall 23:209–215. https://doi.org/10.1016/0001-6160(75)90185-6 CR - 22. Lawner BJ, Mattu A (2012) Cardiac Arrest. In: Cardiovascular Problems in Emergency Medicine: A Discussion-based Review. pp 123–137 CR - 23. Augis JA, Bennett JE (1978) Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal 13:283–292. https://doi.org/10.1007/BF01912301 CR - 24. Aydogdu Y, Aydogdu A, Adiguzel O (2002) Self-accommodating martensite plate variants in shape memory CuAlNi alloys. J Mater Process Technol 123:498–500. https://doi.org/10.1016/S0924-0136(02)00140-1 CR - 25. Recarte V, Pérez-Landazábal JI, Ibarra A, et al (2004) High temperature β phase decomposition processin a Cu-Al-Ni shape memory alloy. Mater Sci Eng A 378:238–242. https://doi.org/10.1016/j.msea.2003.09.111 UR - https://doi.org/10.29109/gujsc.1196035 L1 - https://dergipark.org.tr/tr/download/article-file/2736829 ER -