TY - JOUR T1 - INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS TT - BİYOMEDİKAL UYGULAMALARDA KULLANILAN MİKROBİYAL BİYOPOLİMERLERE BAKIŞ AU - Nural Yaman, Belma AU - Çolak, Benay AU - Çabuk, Doç. Dr. Ahmet PY - 2023 DA - December Y2 - 2023 DO - 10.31796/ogummf.1205232 JF - Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi JO - ESOGÜ Müh Mim Fak Derg PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 2630-5712 SP - 975 EP - 987 VL - 31 IS - 4 LA - en AB - Microbial biopolymers are products of living organisms include microorganism, plant etc. They could be biodegradable, biocompatible, non or low toxic and show anti-inflammatory and antimicrobial activity. They have been grouped in polysaccharide, lipid and protein. Microbial biopolymers are important source as biomaterials in variable sectors consist of biomedical applications, tissue engineering, food industry, wound repair system, and also drug delivery. Therefore, the selection criteria are vital for these areas because these materials use for shaping of medical implants. These criteria should be elected passive and inert for safe and long-term implant in medical applications. In this review, biopolymers derivatives from microorganisms are handled especially alginate, chitin, chitosan, levan, polyhydroxalkanoates, hyaluronic acid and this review has highlighted the potential of microbial biopolymers in the field of biomedical research. For biomedical applications, the economic factors, biosynthesis, and characteristics of these polymers have been examined. The ability of microbial biopolymers to be extraordinarily variable and to have induced features makes them advantageous for solving issues in biomedical research. Microbial biopolymers can be used to arrange sustainable processes in a range of medical applications, including tissue engineering, the development of medical devices, drug delivery, cancer therapy, and wound healing. Therefore, these biopolymers historical past, properties and extraction methods and application approach were emphasized. KW - biomedical application KW - biopolymer KW - microorganisms N2 - Mikrobiyal biyopolimerler, mikroorganizma, bitki vb. dahil canlı organizmaların ürünleri olarak tanımlanır. Biyolojik olarak parçalanabilir, biyouyumlu, toksik olmayan veya düşük toksik, anti enflamatuar ve antimikrobiyal aktivite gibi özelliklere sahip olabilirler. Polisakkarit, lipid ve protein olarak gruplandırılmışlardır. Mikrobiyal biyopolimerler, biyomedikal uygulamalar, doku mühendisliği, gıda endüstrisi, yara onarım sistemi, ilaç dağılımını içeren değişken sektörlerdeki biyomalzemeler olarak önemli bir kaynaktır. Bu nedenle, tıbbi implantların şeklinden dolayı bu alanlar için seçim kriterleri hayati önem taşımaktadır. Medikal uygulamalarda güvenli ve uzun süreli implant için bu kriterler pasif ve inert seçilmelidir.Bu derlemede, biyopolimer türevli mikroorganizmalar, özellikle aljinat, kitin, kitosan, levan, polihidroksalkanoatlar, hyaluronik asit ele alınmış ve mikrobiyal biyopolimerlerin biyomedikal araştırma alanındaki potansiyeline ışık tutmuştur. Biyomedikal uygulamalar için bu polimerlerin ekonomik faktörleri, biyosentezi ve özellikleri incelenmiştir. Mikrobiyal biyopolimerlerin olağanüstü derecede değişken olma ve uyarılmış özelliklere sahip olma yetenekleri, onları biyomedikal araştırmalardaki sorunları çözmek için avantajlı kılar. Mikrobiyal biyopolimerler, doku mühendisliği, tıbbi cihazların geliştirilmesi, ilaç dağılımı, kanser tedavisi ve yara iyileşmesi dahil olmak üzere bir dizi tıbbi uygulamada sürdürülebilir süreçleri düzenlemek için kullanılabilir. Bu nedenle bu biyopolimerlerin tarihçesi, özellikleri, ekstraksiyon yöntemleri ve uygulama alanları yaklaşımı üzerinde durulmuştur. CR - Abdallah, M. M., Fernández, N., Matias, A. A., & Bronze, M. do R. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. In Carbohydrate Polymers (Vol. 243). https://doi.org/10.1016/j.carbpol.2020.116441 CR - Ahmad Raus, R., Wan Nawawi, W. M. F., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. In Asian Journal of Pharmaceutical Sciences (Vol. 16, Issue 3). https://doi.org/10.1016/j.ajps.2020.10.001 CR - Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4). https://doi.org/10.1128/mr.54.4.450-472.1990 CR - Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. In Progress in Polymer Science (Vol. 39, Issue 9). https://doi.org/10.1016/j.progpolymsci.2014.02.008 CR - Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. In Polymers (Vol. 13, Issue 19). https://doi.org/10.3390/polym13193256 CR - Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods -A review. Food Technology and Biotechnology, 51(1). CR - A.R.C. (2020). Biopolymers Market–Forecast (2022–2027).https://www.industryarc.com/Report/11739/biopolymersmarket.html this site was avaliable on 23. 12.2022 CR - Balakrishna Pillai, A., Jaya Kumar, A., & Kumarapillai, H. (2020). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech, 10(2). https://doi.org/10.1007/s13205-019-2017-9 CR - Barr, T. (2020). The Past and Future of the Seaweed Derived Impression Material Alginate. CR - Braunegg, G., Lefebvre, G., & Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. In Journal of Biotechnology (Vol. 65, Issues 2–3). https://doi.org/10.1016/S0168-1656(98)00126-6 CR - Baranwal, J., Barse, B., Fais, A., Delogu, G. L., & Kumar, A. (2022). Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers, 14(5), 983. https://doi.org/10.3390/polym14050983 CR - Çakmak, H., Çelik, P. A., Çınar, S., Hoşgün, E. Z., Mutlu, M. B., & Çabuk, A. (2020). Levan Production Potentials from Different Hypersaline Environments in Turkey. Journal of Microbiology, Biotechnology and Food Sciences, 10(1). https://doi.org/10.15414/jmbfs.2020.10.1.61-64 CR - Çankaya, N. (2017). Biyopolimerler ve Montmorillonit Kil Nanokompozitleri. Politeknik Dergisi, 20(3). CR - Chen, G. Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. In Biomaterials (Vol. 26, Issue 33). https://doi.org/10.1016/j.biomaterials.2005.04.036 CR - Chen, Y., Guo, Z., Wang, X., & Qiu, C. (2008). Sample preparation. In Journal of Chromatography A (Vol. 1184, Issues 1–2). https://doi.org/10.1016/j.chroma.2007.10.026 CR - Chesterman, J., Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2020). Biodegradable polymers. In Principles of Tissue Engineering. https://doi.org/10.1016/B978-0-12-818422-6.00019-8 CR - Crini, G., & Lichtfouse, E. (2019). Sustainable Agriculture Reviews 35. In Sustainable Agriculture Reviews (Vol. 35, Issue Chitin and Chitosan: History, Fundamentals and Innovations). CR - Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 36, Issue 8). https://doi.org/10.1016/j.progpolymsci.2011.02.001 CR - de Lima Batista, A. C., de Souza Neto, F. E., & de Souza Paiva, W. (2018). Review of fungal chitosan: past, present and perspectives in Brazil. In Polimeros (Vol. 28, Issue 3). https://doi.org/10.1590/0104-1428.08316 CR - Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyaluronic acid and its biomedical applications: A review. In Engineered Regeneration (Vol. 1). https://doi.org/10.1016/j.engreg.2020.10.001 CR - Dunlop, W. F., & Robards, A. W. (1973). Ultrastructural study of poly β hydroxybutyrate granules from Bacillus cereus. Journal of Bacteriology, 114(3). https://doi.org/10.1128/jb.114.3.1271-1280.1973 CR - Durner, R., Witholt, B., & Egli, T. (2000). Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Applied and Environmental Microbiology, 66(8). https://doi.org/10.1128/AEM.66.8.3408-3414.2000 CR - el Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. In International Journal of Biological Macromolecules (Vol. 120). https://doi.org/10.1016/j.ijbiomac.2018.08.139 CR - Falcone, S. J., Palmeri, D., & Berg, R. A. (2006). Biomedical applications of hyaluronic acid. ACS Symposium Series, 934. https://doi.org/10.1021/bk-2006-0934.ch008 CR - Gedikli, S., Çelik, P. A., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2019). Experimental Exploration of Thermostable Poly (β-Hydroxybutyrates) by Geobacillus kaustophilus Using Box-Behnken Design. Journal of Polymers and the Environment, 27(2). https://doi.org/10.1007/s10924-018-1335-z CR - Ghosh, S., Lahiri, D., Nag, M., Dey, A., Sarkar, T., Pathak, S. K., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. In Polymers (Vol. 13, Issue 8). https://doi.org/10.3390/polym13081242 CR - Gomes, T. D., Caridade, S. G., Sousa, M. P., Azevedo, S., Kandur, M. Y., Öner, E. T., Alves, N. M., & Mano, J. F. (2018). Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 69. https://doi.org/10.1016/j.actbio.2018.01.027 CR - González-Garcinuño, Á., Tabernero, A., Domínguez, Á., Galán, M. A., & Martin del Valle, E. M. (2018). Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 36(3). https://doi.org/10.1080/10242422.2017.1314467 CR - Gouda, M. K., Swellam, A. E., & Omar, S. H. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research, 156(3). https://doi.org/10.1078/0944-5013-00104 CR - Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D. E., Demirbilek, M., Yazıhan, N., Aytar Çelik, P., Denkbaş, E. B., & Çabuk, A. (2019). Bacterial hyaluronic acid production through an alternative extraction method and its characterization. Journal of Chemical Technology and Biotechnology, 94(6). https://doi.org/10.1002/jctb.5957 CR - Güngörmedi, G., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2014). Polyhydroxybutyrate and hydroxyvalerate production by Bacillus megaterium strain A1 isolated from hydrocarbon-contaminated soil. Journal of Applied Polymer Science, 131(15). https://doi.org/10.1002/app.40530 CR - Haddar, A., Hamed, M., Bouallegue, A., Bastos, R., Coelho, E., & Coimbra, M. A. (2021). Structural elucidation and interfacial properties of a levan isolated from Bacillus mojavensis. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128456 CR - Hinchliffe, J. D., Madappura, A. P., Syed Mohamed, S. M. D., & Roy, I. (2021). Biomedical applications of bacteria-derived polymers. In Polymers (Vol. 13, Issue 7). https://doi.org/10.3390/polym13071081 CR - Jose, A. A., Hazeena, S. H., Lakshmi, N. M., B, A. K., Madhavan, A., Sirohi, R., Tarafdar, A., Sindhu, R., Awasthi, M. K., Pandey, A., & Binod, P. (2022). Bacterial biopolymers: From production to applications in biomedicine. Sustainable Chemistry and Pharmacy, 25, 100582. https://doi.org/10.1016/j.scp.2021.100582 CR - Koller, M., Atlić, A., Dias, M., Reiterer, A., & Braunegg, G. (2010). Microbial PHA Production from Waste Raw Materials. https://doi.org/10.1007/978-3-642-03287-5_5 CR - Kuzgun, N. K., & İnanlı, A. G. (2013). Kitosan üretimi ve özellikleri ile kitosanın kullanım alanları. Türk Bilimsel Derlemeler Dergisi 6, 6(2). CR - Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 37, Issue 1). https://doi.org/10.1016/j.progpolymsci.2011.06.003 CR - Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. In Microbial Cell Factories (Vol. 10). https://doi.org/10.1186/1475-2859-10-99 CR - Madison, L. L., & Huisman, G. W. (1999). Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 63(1). https://doi.org/10.1128/mmbr.63.1.21-53.1999 CR - Masaeli, E., Morshed, M., Nasr-Esfahani, M. H., Sadri, S., Hilderink, J., van Apeldoorn, A., van Blitterswijk, C. A., & Moroni, L. (2013). Fabrication, Characterization and Cellular Compatibility of Poly (Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057157 CR - Miu, D. M., Eremia, M. C., & Moscovici, M. (2022). Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. In Materials (Vol. 15, Issue 4). https://doi.org/10.3390/ma15041410 CR - Mohan, S., Oluwafemi, O. S., Kalarikkal, N., Thomas, S., & Songca, S. P. (2016). Biopolymers – Application in Nanoscience and Nanotechnology. In Recent Advances in Biopolymers. https://doi.org/10.5772/62225 CR - Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. In Nature Reviews Microbiology (Vol. 18, Issue 4). https://doi.org/10.1038/s41579-019-0313-3 CR - Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. In Environmental Chemistry Letters (Vol. 17, Issue 4). https://doi.org/10.1007/s10311-019-00904-x CR - Muhammadi, Shabina, Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3–4). https://doi.org/10.1080/17518253.2015.1109715 CR - Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., & González, M. P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90(3). https://doi.org/10.1016/j.fbp.2011.11.002 CR - Odian, G. (2004). Principles of Polymerization. In Principles of Polymerization. https://doi.org/10.1002/047147875x CR - Öner, E. T., Hernández, L., & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. In Biotechnology Advances (Vol. 34, Issue 5). https://doi.org/10.1016/j.biotechadv.2016.05.002 CR - Othman, S. H. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2. https://doi.org/10.1016/j.aaspro.2014.11.042 CR - Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. In Biomaterials (Vol. 33, Issue 11). https://doi.org/10.1016/j.biomaterials.2012.01.007 CR - Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathomareeid, W., Aizawa, T., Behrens, R. L., & Lumyongid, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0230443 CR - Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5. https://doi.org/10.1016/j.procir.2013.01.042 CR - Poirier, Y. (2002). Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. In Progress in Lipid Research (Vol. 41, Issue 2). https://doi.org/10.1016/S0163-7827(01)00018-2 CR - Puscaselu, R. G., Lobiuc, A., Dimian, M., & Covasa, M. (2020). Alginate: From food industry to biomedical applications and management of metabolic disorders. In Polymers (Vol. 12, Issue 10). https://doi.org/10.3390/polym12102417 CR - Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. In Applied Microbiology and Biotechnology (Vol. 85, Issue 6). https://doi.org/10.1007/s00253-009-2397-6 CR - Ramsay, B. A., Saracovan, I., Ramsay, J. A., & Marchessault, R. H. (1991). Continuous production of long-side-chain poly-β-hydroxyalkanoates by Pseudomonas oleovorans. Applied and Environmental Microbiology, 57(3). https://doi.org/10.1128/aem.57.3.625-629.1991 CR - Rebelo, R., Fernandes, M., & Fangueiro, R. (2017). CR - Biopolymers in Medical Implants: A Brief Review. Procedia Engineering, 200, 236–243. https://doi.org/10.1016/j.proeng.2017.07.034 CR - Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. In Progress in Polymer Science (Oxford) (Vol. 31, Issue 7). https://doi.org/10.1016/j.progpolymsci.2006.06.001 CR - Ruiz, G. A. M., & Corrales, H. F. Z. (2017). Chitosan, Chitosan Derivatives and their Biomedical Applications. In Biological Activities and Application of Marine Polysaccharides. https://doi.org/10.5772/66527 CR - Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. In SN Applied Sciences (Vol. 3, Issue 1). https://doi.org/10.1007/s42452-020-04096-w CR - Salehizadeh, H., & van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnology Advances, 22(3). https://doi.org/10.1016/j.biotechadv.2003.09.003 CR - Salernitano, E., & Migliaresi, C. (2018). Composite Materials for Biomedical Applications: A Review: https://doi.org/10.1177/228080000300100102 CR - Saranraj, P., & Naidu, M. A. (2013). Hyaluronic Acid Production and its Applications-A Review. In International Journal of Pharmaceutical & Biological Archives (Vol. 4, Issue 5). CR - Selyanin, M. A., Boykov, P. Ya., Khabarov, V. N., & Polyak, F. (2015). The History of Hyaluronic Acid Discovery, Foundational Research and Initial Use. In Hyaluronic Acid. https://doi.org/10.1002/9781118695920.ch1 CR - Slater, S., Gallaher, T., & Dennis, D. (1992). Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Applied and Environmental Microbiology, 58(4). https://doi.org/10.1128/aem.58.4.1089-1094.1992 CR - Srikanth, R., Reddy, C. H. S. S. S., Siddartha, G., Ramaiah, M. J., & Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. In Carbohydrate Polymers (Vol. 120). https://doi.org/10.1016/j.carbpol.2014.12.003 CR - Steinbüchel, A., & Schlegel, H. G. (1991). Physiology and molecular genetics of poly (β‐hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. In Molecular Microbiology (Vol. 5, Issue 3). https://doi.org/10.1111/j.1365-2958.1991.tb00725.x CR - Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. In International Journal of Polymer Science (Vol. 2016). https://doi.org/10.1155/2016/7697031 CR - Taidi, B., Anderson, A. J., Dawes, E. A., & Byrom, D. (1994). Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Applied Microbiology and Biotechnology, 40(6). https://doi.org/10.1007/BF00173975 CR - Taran, M., Etemadi, S., & Safaei, M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II,III) oxide–levan nanocomposite. Journal of Applied Polymer Science, 134(12). https://doi.org/10.1002/app.44613 CR - Tobin, K. M., & O’Connor, K. E. (2005). Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiology Letters, 253(1). https://doi.org/10.1016/j.femsle.2005.09.025 CR - Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, Z. S., & Toksoy Oner, E. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules, 118. https://doi.org/10.1016/j.ijbiomac.2018.06.197 CR - Wani, S., Shaikh, S., & Sayyed z, R. (2016). Microbial Biopolymers in Biomedical Field. MOJ Cell Science & Report, 3(3). https://doi.org/10.15406/mojcsr.2016.03.00055 CR - Williams, S. F., Martin, D. P., Horowitz, D. M., & Peoples, O. P. (1999). PHA applications: Addressing the price performance issue I. Tissue engineering. International Journal of Biological Macromolecules, 25(1–3). https://doi.org/10.1016/S0141-8130(99)00022-7 CR - Yasin, A., Ren, Y., Li, J., Sheng, Y., Cao, C., & Zhang, K. (2022). Advances in Hyaluronic Acid for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 10, 910290. https://doi.org/10.3389/fbioe.2022.910290 CR - Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2014). Biodegradable Polymers. In Handbook of Polymer Applications in Medicine and Medical Devices. https://doi.org/10.1016/B978-0-323-22805-3.00013-X UR - https://doi.org/10.31796/ogummf.1205232 L1 - https://dergipark.org.tr/tr/download/article-file/2774629 ER -