TY - JOUR T1 - Gümüş Nanopartiküllerin Morfolojisinin Protein Etkileşimleri Üzerindeki Etkisi TT - The Effect of the Morphology of Silver Nanoparticles on Their Interactions with Proteins AU - Öksel Karakuş, Ceyda AU - Tomak, Aysel PY - 2024 DA - January DO - 10.21205/deufmd.2024267610 JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 1302-9304 SP - 82 EP - 89 VL - 26 IS - 76 LA - tr AB - Nanoteknolojideki gelişmelere paralel olarak biyomedikal uygulamalarda kullanılan nanopartiküllerin sayısında hızlı bir artış yaşanmıştır. Gümüş nanopartiküller, farklı metalik nanopartikül grupları arasında başta antibakteriyel etkinlik olmak üzere tıbbi uygulamaların gereksinimleriyle örtüşen çeşitli avantajlara sahip olmalari dolayısıyla öne çıkmakta ve yaygın olarak kullanılmaktadır. Gümüş nanopartikülleri avantajlı kılan yapı ve yüzey özellikleri biyolojik ortam etkileşimleri sonucunda değişiklik gösterebilmekte ve bu değişimler dolayısıyla biyolojik aktivite ve foksiyonellik gibi nanopartikül özellikleri de doğrudan etkilenmektedir. Nanopartiküllerin biyolojik ortamlarda değişen yüzey özelliklerinin en büyük nedeninin yüzeylerine tutunan proteinler olduğu bilinmektedir. Ancak nanopartiküllerin morfolojik özelliklerinin etraflarında oluşan bu protein halkasının bileşimine ve miktarına olan etkisi tam olarak aydınlatılmamıştır. Bu çalışmada, partikül morfolojisinin nanopartikül-protein etkileşimleri üzerine etkisi incelenmiştir. Bu amaçla küresel ve prizma-benzeri yapıya sahip gümüş nanopartikülleri detaylı olarak karakterize edilmiş ve yüzeylerine tutunan proteinler sodyum dodesil sülfat–poliakrilamid jel elektroforezi (SDS–PAGE) yöntemiyle analitik olarak tayin edilmiştir. Spesifik olarak, küresel ve prizmatik morfolojiye sahip gümüş nanopartikülleri protein eklentili hücre kültürü ortamı içerisinde farklı süre (15 dk, 2 sa ve 24 sa) ve sıcaklıklarda (22 oC ve 37 oC) inkübe edilmiş ve yüzeylerine tutunan proteinler tür ve miktar açısından karşılaştırılmıştır. KW - Nanopartikül KW - Nanogümüş KW - Protein Korona KW - Jel Elektroforezi N2 - In parallel with the developments in nanotechnology, there has been a rapid increase in the number of nanoparticles used in biomedical applications. Silver nanoparticles stand out among different metallic nanoparticle groups because the advantages they offer (e.g., antibacterial activity) mostly overlap with the needs of medical applications. However, the structural features and surface properties that make silver nanoparticles advantageous in biomedical applications can be altered as a result of interactions with the biological environment, which, in turn, is reflected in the biological activity and functionality of nanoparticles. It is well-reported in the literature that the main factor responsible for the changing surface properties of nanoparticles in biological environments is the proteins attached to their surfaces, forming a so-called protein-corona layer around nanoparticles. However, the effect of the morphological properties of nanoparticles on the composition and amount of this protein corona layer formed has not been fully elucidated. In this study, the effect of silver nanoparticles’ morphology on nanoparticle-protein interactions was investigated. To that end, silver nanoparticles of spherical and prismatic shape were characterized in detail and the proteins attached to their surfaces were determined qualitatively by the sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) method. More specifically, silver nanoparticles with spherical and prismatic morphology were incubated in protein-suplemented cell culture medium at different durations (15 min, 2 h and 24 h) and temperatures (22 oC and 37 oC), and the proteins attached to their surfaces were compared in terms of type and amount. CR - Poole, C.P., Owens, F.J. 2003. Introduction to Nanotechnology. CR - Hulla, J., Sahu, S., Hayes, A. 2015. Nanotechnology: History and future. Human & experimental toxicology, Cilt. 34(12), s. 1318-1321. DOI: 10.1177/0960327115603588 CR - Tran, L., M.A. Bañares, and R. Rallo, Modelling the toxicity of nanoparticles. 2017: Springer. DOI: 10.1007/978-3-319-47754-1 CR - Tantra, R., et al., A method for assessing nanomaterial dispersion quality based on principal component analysis of particle size distribution data. Particuology, 2015. 22: p. 30-38. DOI: 10.1016/j.partic.2014.10.004 CR - Akhter, M.H., et al., Impact of protein corona on the biological identity of nanomedicine: understanding the fate of nanomaterials in the biological milieu. Biomedicines, 2021. 9(10): p. 1496. DOI: 10.3390/biomedicines9101496 CR - Joudeh, N., Linke, D. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, Cilt. 20(1), s. 262. DOI: 10.1186/s12951-022-01477-8 CR - Ravindran, A., Chandran, P., Khan, S.S. 2013. Biofunctionalized silver nanoparticles: advances and prospects. Colloids and Surfaces B: Biointerfaces, Cilt. 105, s. 342-352. DOI: 10.1016/j.colsurfb.2012.07.036 CR - Rai, M., Yadav, A., Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, Cilt. 27(1), s. 76-83. DOI: 10.1016/j.biotechadv.2008.09.002 CR - Podila, R., et al., Effects of surface functional groups on the formation of nanoparticle-protein corona. Applied physics letters, 2012. 101(26): p. 263701. DOI: 10.1063/1.4772509 CR - Shannahan, J.H., et al., Silver nanoparticle protein corona composition in cell culture media. PloS one, 2013. 8(9): p. e74001. DOI: 10.1371/journal.pone.0074001 CR - Lai, W., et al., Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns. Colloids and Surfaces B: Biointerfaces, 2017. 152: p. 317-325. DOI: 10.1016/j.colsurfb.2017.01.037 CR - Barbalinardo, M., et al., Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small, 2018. 14(34): p. 1801219. DOI: 10.1002/smll.201801219 CR - Ban, D.K. and S. Paul, Protein corona over silver nanoparticles triggers conformational change of proteins and drop in bactericidal potential of nanoparticles: Polyethylene glycol capping as preventive strategy. Colloids and Surfaces B: Biointerfaces, 2016. 146: p. 577-584. DOI: 10.1016/j.colsurfb.2016.06.050 CR - Spagnoletti, F.N., et al., Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. Journal of Environmental Management, 2021. 297: p. 113434. DOI: 10.1016/j.jenvman.2021.113434 CR - Walkey, C.D., et al., Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS nano, 2014. 8(3): p. 2439-2455. DOI: 10.1021/nn406018q CR - Ashkarran, A.A., et al., Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chemical research in toxicology, 2012. 25(6): p. 1231-1242. DOI: 10.1021/tx300083s CR - Fertsch-Gapp, S., et al., Binding of polystyrene and carbon black nanoparticles to blood serum proteins. Inhalation Toxicology, 2011. 23(8): p. 468-475. DOI: 10.3109/08958378.2011.583944 CR - Podila, R. and J.M. Brown, Toxicity of engineered nanomaterials: a physicochemical perspective. Journal of biochemical and molecular toxicology, 2013. 27(1): p. 50-55. DOI: 10.1002/jbt.21442 CR - Tomak, A., Cesmeli, S., Hanoglu, B. D., Winkler, D., Oksel Karakus, C. 2021. Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology, Cilt. 15(10), s. 1331-1357. DOI: 10.1080/17435390.2022.2025467 CR - Lundqvist, M., et al., The evolution of the protein corona around nanoparticles: a test study. ACS nano, 2011. 5(9): p. 7503-7509. DOI: 10.1021/nn202458g CR - Lundqvist, M., et al., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 2008. 105(38): p. 14265-14270. DOI: 10.1073/pnas.0805135105 CR - Kharazian, B., N. Hadipour, and M. Ejtehadi, Understanding the nanoparticle–protein corona complexes using computational and experimental methods. The international journal of biochemistry & cell biology, 2016. 75: p. 162-174. DOI: 10.1016/j.biocel.2016.02.008 CR - Gräfe, C., et al., Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. The international journal of biochemistry & cell biology, 2016. 75: p. 196-202. DOI: 10.1016/j.biocel.2015.11.005 CR - Cedervall, T., et al., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 2007. 104(7): p. 2050-2055. DOI: 10.1073/pnas.0608582104 CR - Monopoli, M.P., et al., Formation and characterization of the nanoparticle–protein corona. Nanomaterial Interfaces in Biology: Methods and Protocols, 2013: p. 137-155. DOI: 10.1007/978-1-62703-462-3_11 CR - Gossmann, R., et al., Comparative examination of adsorption of serum proteins on HSA-and PLGA-based nanoparticles using SDS–PAGE and LC–MS. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 93: p. 80-87. DOI: 10.1016/j.ejpb.2015.03.021 CR - Di Silvio, D., et al., Technical tip: high-resolution isolation of nanoparticle–protein corona complexes from physiological fluids. Nanoscale, 2015. 7(28): p. 11980-11990. DOI: 10.1039/C5NR02618K CR - Madathiparambil Visalakshan, R., et al., The influence of nanoparticle shape on protein corona formation. Small, 2020. 16(25): p. 2000285. DOI: 10.1002/smll.202000285 CR - Tomak, A., Yilancioglu, B., Winkler, D., Karakus, C. O. 2022. Protein corona formation on silver nanoparticles under different conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 651, DOI: 10.1016/j.colsurfa.2022.129666 CR - Kopac, T. 2021. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review. International Journal of Biological Macromolecules, Cilt. 169, s. 290-301. DOI: 10.1016/j.ijbiomac.2020.12.108 CR - Tuan Anh, M. N., Nguyen, D. T. D., Ke Thanh, N. V., Phuong Phong, N. T., Nguyen, D. H., Nguyen-Le, M. T. 2020. Photochemical synthesis of silver nanodecahedrons under blue LED irradiation and their SERS activity. Processes, Cilt. 8(3), s. 292. DOI: 10.3390/pr8030292 CR - Sharifi-Rad, M., Pohl, P. 2020. Synthesis of biogenic silver nanoparticles (Agcl-NPs) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials, Cilt. 10(4), s. 638. DOI: 10.3390/nano10040638 CR - Yu, P., Huang, J., & Tang, J. 2011. Observation of coalescence process of silver nanospheres during shape transformation to nanoprisms. Nanoscale Res Lett, Cilt. 6, s. 1-7. DOI: 10.1007/s11671-010-9808-6 CR - Miclăuş, T., Beer, C., Chevallier, J., Scavenius, C., Bochenkov, V. E., Enghild, J. J., Sutherland, D. S. 2016. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nature Communications, Cilt. 7(1), s. 11770. DOI: 10.1038/ncomms11770 CR - Akhtar, M. J., Kumar, S., Alhadlaq, H. A., Alrokayan, S. A., Abu-Salah, K. M., Ahamed, M. 2016. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and industrial health, Cilt. 32(5), s. 809-821. DOI: 10.1177/0748233713511512 CR - Mohammad-Beigi, H., Hayashi, Y., Zeuthen, C. M., Eskandari, H., Scavenius, C., Juul-Madsen, K., Sutherland, D. S. 2020. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nature Communications, Cilt. 11(1), s. 4535. DOI: 10.1038/s41467-020-18237-7 CR - Jurašin, D. D., Ćurlin, M., Capjak, I., Crnković, T., Lovrić, M., Babič, M., Gajović, S. 2016. Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein Journal of Nanotechnology, Cilt. 7(1), s. 246-262. DOI: :10.3762/bjnano.7.23 CR - Braun, N.J., et al., Modification of the protein corona–nanoparticle complex by physiological factors. Materials Science and Engineering: C, 2016. 64: p. 34-42. DOI: 10.1016/j.msec.2016.03.0 UR - https://doi.org/10.21205/deufmd.2024267610 L1 - http://dergipark.org.tr/tr/download/article-file/2946050 ER -