TY - JOUR T1 - Emerging Technologies for Fluorescence-Based Optical Test Strip Readers TT - Emerging Technologies for Fluorescence-Based Optical Test Strip Readers AU - Ertaş, Gökhan AU - Aksoy, Seda AU - Dulda, Ayşe PY - 2023 DA - March DO - 10.31590/ejosat.1265098 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 16 EP - 24 IS - 49 LA - en AB - Fluorescence-based optical test strip readers are used to detect and quantify fluorescent signals from immunoassay test strips in medicine, especially for point-of-care applications. The design of optical systems including light sources and detection systems in these devices is not only indispensable but also the most critical part for specific detection applications. This study aims to provide detailed information about fluorescence-based optical test strip readers, existing and emerging technologies, and their contributions to the design of the device. The most commonly used technologies of light sources and detection systems have been discussed and compared for the ideal design. Arc and Xenon lamps may not be appropriate for portable and low-cost devices as they are larger and more costly when compared to LEDs and laser diodes. Photodiodes and CMOS detectors can be used for the design of low-cost, portable fluorescence-based optical test strip readers as they are cheaper and smaller in size when compared to CCDs and PMTs. Both light source and detector should be chosen according to the application priorities and spectral characteristics of the fluorescent molecule by integrating them with proper optical elements like filters, mirrors, etc. This study contributes to the people who are interested in the design of fluorescence-based optical test strip readers as it serves as a guideline for the optical test strip reader systems. KW - Fluorescence KW - test strip KW - optical reader KW - light source N2 - Fluorescence-based optical test strip readers are used to detect and quantify fluorescent signals from immunoassay test strips in medicine, especially for point-of-care applications. The design of optical systems including light sources and detection systems in these devices is not only indispensable but also the most critical part for specific detection applications. This study aims to provide detailed information about fluorescence-based optical test strip readers, existing and emerging technologies, and their contributions to the design of the device. The most commonly used technologies of light sources and detection systems have been discussed and compared for the ideal design. Arc and Xenon lamps may not be appropriate for portable and low-cost devices as they are larger and more costly when compared to LEDs and laser diodes. Photodiodes and CMOS detectors can be used for the design of low-cost, portable fluorescence-based optical test strip readers as they are cheaper and smaller in size when compared to CCDs and PMTs. Both light source and detector should be chosen according to the application priorities and spectral characteristics of the fluorescent molecule by integrating them with proper optical elements like filters, mirrors, etc. This study contributes to the people who are interested in the design of fluorescence-based optical test strip readers as it serves as a guideline for the optical test strip reader systems. CR - Jin, B., Li, Z., Zhao, G., Ji, J., Chen, J., Yang, Y., & Xu, R. (2022). Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Analytica Chimica Acta, 1192, 339-388. https://doi.org/10.1016/j.aca.2021.339388 CR - Zhang, Y., Liao, T., Wang, G., Xu, J., Wang, M., Ren, F., & Zhang, H. (2022). An ultrasensitive NIR-IIa’ fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. Journal of Advanced Research, 103328. https://doi.org/10.1016/j.jare.2022.10.008 CR - Gu, Y. B., Chiang, K. L., Chen, H. C., Liao, S. H., Liu, H. J., & Huang, J. H. (2019). Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sensors and Actuators B: Chemical, 280, 24-33. https://doi.org/10.1016/j.snb.2018.10.034 CR - Wang, J., Jiang, C., Jin, J., Huang, L., Yu, W., Su, B., & Hu, J. (2021). Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angewandte Chemie International Edition, 60(23), 12971-12978. https://doi.org/10.1002/ange.202103458 CR - Tavakoli, H., Zhou, W., Ma, L., Guo, Q., & Li, X. (2019). Paper and paper hybrid microfluidic devices for point-of-care detection of infectious diseases. In X. Jiang, C. Bai, & M. Liu (Eds.), Nanotechnology and Microfluidics (pp. 153-181). John Wiley & Sons. https://doi.org/10.1002/9783527818341.ch6 CR - Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science and Technology, 42(6), 635-645. https://doi.org/10.1080/10739149.2014.930877 CR - Mulberry, G., White, K. A., Vaidya, M., Sugaya, K., & Kim, B. N. (2017). 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLoS ONE, 12(6), e0179133. https://doi.org/10.1371/journal.pone.0179133 CR - Karthik, S., Shah, M. I., Natarajan, S., Shetty, M. J., & Joseph, J. (2019). A motion free image based TRF reader for quantitative immunoassay. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 163-166). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.896 CR - Katzmeier, F., Aufinger, L., Dupin, A., Quintero, J., Lenz, M., Bauer, L., Klumpe, S., Sherpa, D., Dürr, B., Honemann, M., Styazhkin, I., Simmel, F. C., & Heymann, M. (2019). A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLOS ONE, 14(12), e0220091. https://doi.org/10.1371/journal.pone.0220091 CR - Shah, K. G., Kumar, S., Singh, V., Hansen, L., Heiniger, E., Bishop, J. D., Lutz, B., & Yager, P. (2020). Two-Fluorophore Mobile Phone Imaging of Biplexed Real-Time NAATs Overcomes Optical Artifacts in Highly Scattering Porous Media. Analytical Chemistry, 92(19), 13066-13072. https://doi.org/10.1021/acs.analchem.0c02000 CR - Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(A), 658-678. https://doi.org/10.1016/j.tifs.2021.10.025 [12] Xu, G., Fan, X., Chen, X., Liu, Z., Chen, G., Wei, X., Li, X., Leng, Y., Xiong, Y., & Huang, X. (2023). Ultrasensitive Lateral Flow Immunoassay for Fumonisin B1 Detection Using Highly Luminescent Aggregation-Induced Emission Microbeads. Toxins, 15(1), 79. https://doi.org/10.3390/toxins15010079 CR - Gu, Y., Yang, Y., Zhang, J., Ge, S., Tang, Z., & Qiu, X. (2014). Point-of-care test for C-reactive protein by a fluorescence-based lateral flow immunoassay. Instrumentation Science & Technology, 42(3), 289-300. https://doi.org/10.1080/10739149.2014.93087 CR - Ireta-Muñoz, L. A., & Morales-Narváez, E. (2020). Smartphone and paper-based fluorescence reader: a do it yourself approach. Biosensors, 10(6), 60. https://doi.org/10.3390/bios10060060 CR - Bergua, J. F., Álvarez-Diduk, R., Idili, A., Parolo, C., Maymó, M., Hu, L., & Merkoçi, A. (2022). Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem., 94(2), 1271-1285. https://doi.org/10.1021/acs.analchem.1c04491 CR - Fang, X., Zheng, Y., Duan, Y., Liu, Y., & Zhong, W. (2018). Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal. Chem., 91(1), 482-504. https://doi.org/10.1021/acs.analchem CR - Sharma, M., Graham, J. Y., Walczak, P. A., Nguyen, R. M., Lee, L. K., Carson, M. D., Nelson, L. Y., Patel, S. N., Xu, Z., & Seibel, E. J. (2019). Optical pH measurement system using a single fluorescent dye for assessing susceptibility to dental caries. Journal of Biomedical Optics, 24(1), 017001. https://doi.org/10.1117/1.JBO.24.1.017001 CR - Fan, R., Zhang, W., Jin, Y., Zhao, R., Yang, C., Chen, Q., He, L., & Chen, Y. (2020). Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Microchimica Acta, 187, 368. https://doi.org/10.1007/s00604-020-04522-2 CR - Flores, R., Afshari, S., & Christen, J. B. (2019). Colorimetric point-of-care human papillomavirus diagnostic reader. In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 80-82). IEEE. https://doi.org/10.1109/HI-POCT45284.2019.8962666 CR - Barthels, F., Hammerschmidt, S. J., Fischer, T. R., Zimmer, C., Kallert, E., Helm, M., Kersten, C., & Schirmeister, T. (2022). A low-cost 3D-printable differential scanning fluorometer for protein and RNA melting experiments. HardwareX, 11, e00256. https://doi.org/10.1016/j.ohx.2021.e00256 CR - Tang, E. N., Nair, A., Baker, D. W., Hu, W., & Zhou, J. (2014). In vivo imaging of infection using a bacteria-targeting optical nanoprobe. Journal of Biomedical Nanotechnology, 10(5), 856-863. https://doi.org/10.1166/jbn.2014.1852 CR - Obahiagbona, U., Smith, J. T., Zhu, M., Katchman, B. A., Arafa, H., Anderson, K. S., & Christen, J. M. B. (2018). A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosensors and Bioelectronics, 117, 153-160. https://doi.org/10.1016/j.bios.2018.04.002 CR - Garg, S. (2019). A multiplexed, point-of-care detection system for dengue (Master's thesis). University of Toronto. CR - Fu, X., Cheng, Z., Yu, J., Choo, P., Chen, L., & Choo, J. (2016). A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosensors and Bioelectronics, 78, 530-537. https://doi.org/10.1016/j.bios.2015.11.099 CR - Yamamoto, T., Hashimoto, M., Nagatomi, K., Nogami, T., Sofue, Y., Hayashi, T., Ido, Y., Yatsushiro, S., Abe, K., Kajimoto, K., Tamari, N., Awuor, B., Sonye, G., Kongere, J., Munga, S., Ohashi, J., Oka, H., Minakawa, N., Kataoka, M., & Mita, T. (2020). Development of a quantitative, portable, and automated fluorescent blue-ray device-based malaria diagnostic equipment with an on-disc SiO2 nanofiber filter. Scientific Reports, 10(1), 6585. https://doi.org/10.1038/s41598-020-63500-2 CR - Mahzabeen, F., Vermesh, O., Levi, J., Tan, M., Alam, I. S., Chan, C. T., Gambhir, S. S., & Harris, J. S. (2021). Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay. Biosensors and Bioelectronics, 180, 112823. https://doi.org/10.1016/j.bios.2020.112823 CR - Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J. G., & Lin, Y. (2010). Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Analytical Chemistry, 82(16), 7008-7014. https://doi.org/10.1021/ac101405a CR - Yang, Q., Gong, X., Song, T., Yang, J., Zhu, S., Li, Y., Cui, Y., Li, Y., Zhang, B., & Chang, J. (2011). Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics, 30(1), 145-150. https://doi.org/10.1016/j.bios.2011.09.002 CR - Soh, J. H., Chan, H. M., & Ying, J. Y. (2020). Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today, 30, 100831. https://doi.org/10.1016/j.nantod.2019.100831 CR - Xing, G., Sun, X., Li, N., Li, X., Wu, T., & Wang, F. (2022). New Advances in Lateral Flow Immunoassay (LFI) Technology for Food Safety Detection. Molecules, 27(19), 6596. https://doi.org/10.3390/molecules27196596 CR - Bahadır, E. B., & Sezgintürk, M. K. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286-306. doi: 10.1016/j.trac.2016.06.006 CR - Wu, Y., Sun, J., Huang, X., Lai, W., & Xiong, Y. (2021). Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology, 118(Part A), 658-678. doi: 10.1016/j.tifs.2021.10.025 CR - Becheva, Z., Gabrovska, K., & Ivanov, Y. (2017). Enhancement of immunoassay fluorescence and detection sensitivity to neutrophils by using antibodies multiple labelled with dye/DNA conjugate. Technical and Natural Sciences-Annual of Assen Zlatarov University, Burgas, XLVI(1), 31-36. CR - Zeng, H., Zhai, X., Xie, M., & Liu, Q. (2018). Fluorescein isothiocyanate labeling antigen-based immunoassay strip for rapid detection of Acidovorax citrulli. Plant Disease, 102(3), 527-532. https://doi.org/10.1094/PDIS-06-17-0793-RE CR - Zhou, Y., Huang, X., Xiong, S., Li, X., Zhan, S., Zeng, L., & Xiong, Y. (2018). Dual-mode fluorescent and colorimetric immunoassay for the ultrasensitive detection of alpha-fetoprotein in serum samples. Analytica Chimica Acta, 1038, 112-119. https://doi.org/10.1016/j.aca.2018.07.007 CR - Cao, J., Chen, X.-Y., & Zhao, W.-R. (2019). Determination of Morphine in Human Urine by the Novel Competitive Fluorescence Immunoassay. Journal of Analytical Methods in Chemistry, 2019, article ID 7826090. https://doi.org/10.1155/2019/7826090 CR - Wang, J.-H., Bartlett, J. D., Dunn, A. C., Small, S., Willis, S. L., Driver, M. J., & Lewis, A. L. (2005). The use of rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials. Journal of Microscopy, 217, 216-224. https://doi.org/10.1111/j.1365-2818.2005.01453.x CR - Grimm, J. B., Tkachuk, A. N., Xie, L., Leonard, J. D., Saurabh, S., Los, G. V., & Lavis, L. D. (2020). A general method to optimize and functionalize red-shifted rhodamine dyes. Nature Methods, 17(9), 815-821. https://doi.org/10.1038/s41592-020-0909-6 CR - Cell Biolabs. (n.d.). Rhodamine Competitive ELISA Kit AKR-5142. Retrieved March 1, 2023, from https://www.cellbiolabs.com/sites/default/files/AKR-5142-rhodamine-competitive-elisa-kit.pdf CR - Zhou, M., Zhang, X., Bai, M., Shen, D., Xu, B., Kao, J., Ge, X., & Achilefu, S. (2013). Click reaction-mediated functionalization of near-infrared pyrrolopyrrole cyanine dyes for biological imaging applications. RSC Advances, 3(19), 6927-6930. https://doi.org/10.1039/C3RA40861K CR - Schwechheimer, C., Rönicke, F., Schepers, U., & Wagenknecht, H. (2018). A new structure-activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chemical Science, 9(30), 6557-6563. https://doi.org/10.1039/C8SC01574K CR - Ma, X., Shi, L., Zhang, B., Wang, Y., & Chen, X. (2022). Recent advances in bioprobes and biolabels based on cyanine dyes. Analytical and Bioanalytical Chemistry, 414(16), 4551-4573. https://doi.org/10.1007/s00216-022-03995-8 CR - Hixson, J. L., & Ward, A. S. (2022). Hardware selection and performance of low-cost fluorometers. Sensors, 22(6), 2319. https://doi.org/10.3390/s22062319 CR - Cao, X. E., Yhombi, S. O., Wang, R., & Ren, Y. (2022). A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine, 76(1), 103867. doi:10.1016/j.ebiom.2022.103867 CR - Zheng, H., Wu, H., Jiang, H., & Yang, J. (2020). Development of a smartphone-based fluorescent immunochromatographic assay strip reader. Sensors, 20(16), article 4521. doi:10.3390/s20164521 CR - Borse, V., Patil, A. S., & Srivastava, R. (2017). Development and testing of portable fluorescence reader (PorFloR™). 2017 9th International Conference on Communication Systems and Networks (COMSNETS), 498-501. doi:10.1109/COMSNETS.2017.7945442 CR - Drummen, G. P. C. (2012). Fluorescent probes and fluorescence (microscopy) techniques - Illuminating biological and biomedical research. Molecules, 17(12), 14067-14090. doi:10.3390/molecules171214067 CR - Cios, J., Janus, M., & Lachowicz, M. (2021). Effect of different wavelengths of laser irradiation on the skin cells. In IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1-5). doi:10.3390/ijms22052437 CR - Cai, S., Sze, J. Y. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1797. CR - Mair, F., & Tyznik, A. J. (2019). High-dimensional immunophenotyping with fluorescence-based cytometry: A practical guidebook. Methods in Molecular Biology (Clifton, N.J.), 2032, 213–234. doi:10.1007/978-1-4939-9648-3_13 CR - Sawayama, J., & Takeuchi, S. (2021). Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor. IEEE Access, 9, 11805-11813. https://doi.org/10.1109/ACCESS.2021.3050675. CR - Alam, M. W., Wahid, K. A., Goel, R. K., & Lukong, K. E. (2019). Development of a low-cost and portable smart fluorometer for detecting breast cancer cells. Biomed. Opt. Express, 10(2), 399-410. https://doi.org/10.1364/BOE.10.000399. CR - Yang, Y., Gu, Y., Ge, S., & Tang, Z. (2015). Development of a quantifiable optical reader for lateral flow immunoassay. In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI) (pp. 487-491). IEEE. https://doi.org/10.1109/BMEI.2015.7401527. CR - Gui, C., Wang, K., Li, C., Dai, X., & Cui, D. (2014). A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA. Nanoscale Research Letters, 9(1), 57. https://doi.org/10.1186/1556-276X-9-57. CR - Albani, J. (2007). Principles and applications of fluorescence spectroscopy. Blackwell Sci. https://doi.org/10.1002/9780470027318. CR - Huang, H., Lu, Y. N., Shan, Y., Liu, F., & Wang, S. (2022). Handheld fluorescence test strip reader for rapid on-site biochemical detection. In Optics in Health Care and Biomedical Optics XII (p. 123201N). doi: 10.1117/12.2638645. UR - https://doi.org/10.31590/ejosat.1265098 L1 - https://dergipark.org.tr/tr/download/article-file/3010675 ER -