TY - JOUR T1 - Demiryollarında Kullanılan Ağır Hizmet Dizel Motorlarında Viskozite Ölçümüyle Motor Yağı Yakıt Seyreltmesinin Teşhisi TT - Diagnosing Engine Oil Fuel Dilution by Viscosity Measurement in Heavy-Duty Diesel Engines Used in Railways AU - Tat, Mustafa Ertunç AU - Doru, Emine PY - 2023 DA - July DO - 10.47072/demiryolu.1268973 JF - Demiryolu Mühendisliği JO - Demiryolu Mühendisliği PB - Demiryolu Mühendisleri Derneği WT - DergiPark SN - 2149-1607 SP - 26 EP - 35 IS - 18 LA - tr AB - Kestirimci bakım yöntemleriyle karmaşık mühendislik sistemlerinde ortaya çıkabilecek arızalar önceden kontrol altına alınabilir. Titreşim analizi, ultrasonik test, termal kamera ile görüntüleme ve yağ analizi gibi uygulamalar kestirimci bakım yöntemleridir. Bu yöntemlerle, arıza henüz meydana gelmeden veyahut ciddi boyutlara ulaşmadan, sensörler aracılığıyla sistem ve ekipman gerekliliklerine göre belirlenmiş verilerin elde edilip incelenmesiyle muhtemel arızaların önüne geçilebilir. Bu çalışmada bir ağır dizel motor yağının (10W-40) içerisine ağırlıkça %1, %2, %5 ve %10 oranlarında biyodizel yakıtı konularak seyreltilmiştir. Yakıtla seyreltilmiş ağır dizel motor yağının viskozite ve yoğunluk performansları Anton Paar Automated Micro Viscometer ve DMA 4500 Density Meter kullanılarak 40, 60, 80 ve 90 ℃, sıcaklıklarında ölçülmüştür. Yağın içerisindeki yakıt miktarı seyrelmesinin viskozite ve yoğunluk değerleri üzerinden gözlemlenebildiği, seyrelmenin artmasıyla viskozitenin düştüğü fakat yoğunluğun arttığı ve yoğunluk üzerindeki değişmenin sıcaklıktan etkilenmediği fakat viskozite değerlerindeki ayrışmanın sıcaklıktan etkilendiği görülmüştür. Özellikle yakıt seyrelmesinin viskozite üzerindeki sıcaklığa bağlı etkisi %5 oranına kadar sabitken, seyrelme oranı artıkça sıcaklığa bağlı davranış değişiklik göstermiştir. KW - Viskozite KW - Ağır hizmet dizel motoru KW - Motor yağı KW - Kestirimci bakım N2 - Predictive maintenance methods allow failures that may occur in complex engineering systems to be controlled beforehand. Vibration, ultrasonic testing, thermal imaging, and oil analysis are predictive maintenance methods. These methods prevent possible malfunctions by obtaining and examining the data determined according to the system and equipment requirements through sensors before the malfunction occurs or reaches profound dimensions. In this study, heavy diesel engine oil (10W-40) was diluted by adding %1, %2, %5, and 10% by weight of biodiesel fuel. Viscosity and density performances of heavy diesel engine oil diluted with biofuel were evaluated using Anton Paar Automated Micro Viscometer and DMA 4500 Density Meter at temperatures 40, 60, 80, and 90 ℃. It was observed that the amount of fuel in engine oil could be detectable through the viscosity and density values. As the dilution increases, the viscosity decreases, but the density increases and the change in density is not affected by the temperature, but the temperature affects the change in the viscosity values. In particular, while the temperature-dependent effect of fuel dilution on viscosity was constant up to 5%, the temperature-dependent behavior changed as the dilution increased. CR - [1] Moslojistik, “Demiryolu taşımacılığının avantajları,” 2016. [Online]. Available: http://www.moslojistik.com/demiryolu-tasimaciliginin-avantajlari. [Accessed: 08-April-2022]. CR - [2] S. Abusaad, K. Brethee, M. Assaeh, R. Zhang, F. Gu, and A.D. Ball, “The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters,” Journal of Physics: Conference Series, pp. 1-9, 2016, doi: 10.1088/1742-6596/628/1/012078 CR - [3] H. Raposa, J. T. Farinha, I. Fonseca, and D. Galarb, “Predicting condition based on oil analysis – A case study,” Tribology International, pp. 65-74, 2019, doi: 10.1016/j.triboint.2019.01.041 CR - [4] J. Zhu, D. He, and E. Bechhoefer, “Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques,” Journal of Chemical Science and Technology and Systems, pp. 100-115, 2013. CR - [5] L. Guan, X.L. Feng, G. Xiong, and J.A. Xie, “Application of dielectric spectroscopy for engine lubricating oil degradation,” Sensors and Actuators A, Vol. 168, pp. 22 – 29, 2011, doi: 10.1016/j.sna.2011.03.033 CR - [6] Agostonet Agoston, C. Otsch, and B. Jakoby, “Viscosity sensors for engine oil condition monitoring-Application and interpretation of results,” Sensors and Actuators A Physical, vol. 121, no. 2, pp. 327 – 332, 2005, doi: 10.1016/j.sna.2005.02.024 CR - [7] J. Schmitigal and S. Moyer, “Evaluation of sensors for on-board diesel oil condition monitoring of U.S. Army ground equipment,” TACOM/TARDEC, Report No. 14113, 04 JAN 2005. CR - [8] J.D. Turner and L. Austin, “Electrical techniques for monitoring the condition of lubrication oil,” Measurement Science and Technology, vol. 14, no. 10, pp. 1794 – 1800, 2003, doi: 10.1088/0957-0233/14/10/308. CR - [9] J. Kuntner, R. Chabicovsky, and B. Jakoby, “Oil condition monitoring using a thermal conductivity sensor,” ‖ Proceedings of the GMe Forum, Vienna, Austria, March 17 - 18, 2005, pp. 203 – 209. CR - [10] D. Mann, “Motor oils and engine lubrication”, USA, Motor Oil Engineers, L.L.C., pp. 4, 2003. CR - [11] B.C. Sharma and O.P. Gandhi, “Performance evaluation and analysis of lubricating oil using parameter profile approach,” Industrial Lubrication and Tribology, vol. 60, no. 3, pp. 131 – 137, 2008, doi: 10.1108/00368790810871057. CR - [12] J. D. Halderman, Automotive Technology, New York: McGraw-Hill. A 1996 CR - [13] S. Kumar, P.S. Mukherjee, and N. M. Mishra, “Online condition monitoring of engine oil,” Industrial Lubrication and Tribology, vol. 57, no. 6, pp. 260 – 267, 2005 doi: 10.1108/00368790510622362 CR - [14] J.D. Turner and L. Austin, “Electrical techniques for monitoring the condition of lubrication oil,” Measurement Science and Technology, pp. 1794 – 1800, 2003, doi: 10.1088/0957-0233/14/10/308 UR - https://doi.org/10.47072/demiryolu.1268973 L1 - https://dergipark.org.tr/tr/download/article-file/3026979 ER -