TY - JOUR T1 - Rosuvastatin relaxes rat thoracic aorta, pulmonary artery, and trachea via nitric oxide, prostanoids, and potassium channels TT - Rosuvastatin, sıçan torasik aortunu, pulmoner arterini ve trakesini nitrik oksit, prostanoidler ve potasyum kanalları yoluyla gevşetir AU - Şahintürk, Serdar PY - 2023 DA - July Y2 - 2023 DO - 10.17826/cumj.1279122 JF - Cukurova Medical Journal JO - Cukurova Med J PB - Çukurova Üniversitesi WT - DergiPark SN - 2602-3032 SP - 419 EP - 431 VL - 48 IS - 2 LA - en AB - Purpose: This study aimed to determine the functional effects and mechanisms of the action of rosuvastatin on vascular and tracheal smooth muscle tissues. Materials and Methods: Vascular and tracheal rings (2-3 mm) isolated from the thoracic aortas, pulmonary arteries, and tracheas of Wistar Albino male rats (250-300 g) were placed in chambers in the isolated tissue bath system. As the resting tension, 1 g was selected. Vascular rings contracted with 10-6 M phenylephrine after a 90-minute equilibration period. Tracheal rings contracted with 10-5 M acetylcholine. After the contraction was steady, rosuvastatin (10-8-10-4 M) was cumulatively applied to the vascular and tracheal rings. The defined experimental methodology was repeated following the incubation of selective inhibitors of signaling pathways and K+ channel blockers to ascertain rosuvastatin's functional effect mechanisms. Results: In the precontracted rat vascular and tracheal rings, rosuvastatin induced concentration-dependent relaxation. The maximal relaxation level in vessel samples was 96%. On the other hand, the maximal relaxation level in tracheal samples was found to be 75%. The vasorelaxant effects of rosuvastatin were dramatically attenuated by endothelium removal, L-NAME treatment, and indomethacin incubation (up to 27%). With the incubation of tetraethylammonium, glyburide, 4-Aminopyridine, and anandamide, rosuvastatin-mediated vascular smooth muscle relaxation levels were significantly decreased (up to 38%). Moreover, With the incubation of tetraethylammonium, glyburide, and 4-Aminopyridine rosuvastatin-mediated tracheal smooth muscle relaxation levels were significantly decreased (up to 30%). Conclusion: Rosuvastatin has a noticeable relaxing effect on the vascular and tracheal smooth muscles. The vasorelaxant effect of rosuvastatin involves intact endothelium, nitric oxide, prostanoids, and K+ channels (BKCa, KV, and KATP channels). Furthermore, nitric oxide, prostanoids, BKCa channels, KV channels, and KATP channels play a role in rosuvastatin-induced tracheal smooth muscle relaxation KW - Aorta KW - nitric oxide KW - potassium KW - pulmonary artery KW - rosuvastatin KW - trachea. N2 - Amaç: Bu çalışma rosuvastatin'in vasküler ve trakeal düz kas dokuları üzerindeki işlevsel etkilerini ve etki mekanizmalarını belirlemeyi amaçladı. Gereç ve Yöntem: Wistar Albino erkek sıçanların (250-300 g) torasik aortları, pulmoner arterleri ve trakealarından izole edilen vasküler ve trakeal halkalar (2-3 mm), izole doku banyosu sistemindeki haznelere yerleştirildi. Dinlenme gerimi olarak 1 g seçildi. Vasküler halkalar, 90 dakikalık dengeleme periyodundan sonra 10-6 M fenilefrin ile kasıldı. Trakeal halkalar ise 10-5 M asetilkolin ile kasıldı. Kasılma stabil hale geldikten sonra, rosuvastatin (10-8-10-4 M) vasküler ve trakeal halkalara kümülatif olarak uygulandı. Rosuvastatin'in işlevsel etki mekanizmalarını belirlemek için seçici sinyal yolak inhibitörleri ve K+ kanal blokerlerinin inkübasyonu sonrasında belirlenen deneysel metodoloji tekrar edildi. Bulgular: Rosuvastatin, ön kasılma uygulanmış sıçan vasküler ve trakeal halkalarında doz bağımlı bir gevşeme oluşturdu. Damar örneklerindeki maksimal gevşeme düzeyi % 96 idi. Öte yandan, trake örneklerindeki maksimal gevşeme düzeyi % 75 olarak bulundu. Rosuvastatin'in vazodilatör etkileri, endotelin çıkarılması, L-NAME tedavisi ve indometazin inkübasyonu ile anlamlı olarak azaldı (% 27’ye kadar). Tetraethylammonium, gliburid, ve 4-Aminopiridin inkübasyonu ile rosuvastatin kaynaklı vasküler düz kas gevşeme düzeyleri önemli ölçüde azaldı (% 38’e kadar). Dahası, tetraethylammonium, gliburid ve 4-Aminopiridin inkübasyonu ile rosuvastatin ile uyarılan trakeal düz kas gevşeme düzeyleri anlamlı olarak azaldı (% 30’a kadar). Sonuç: Rosuvastatinin vasküler ve trakeal düz kaslarda belirgin bir gevşetici etkisi vardır. Rosuvastatin'in vazodilatör etkisi, sağlam endotel, nitrik oksit, prostanoidler ve K+ kanalları (BKCa, KV ve KATP kanalları) ile ilişkilidir. Ayrıca, nitrik oksit, prostanoidler, BKCa kanalları, KV kanalları ve KATP kanalları, rosuvastatin tarafından indüklenen trakeal düz kas gevşemesinde rol oynamaktadır. CR - Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292:1160-4. CR - Vagelos PR. Are prescription drug prices high? Science. 1991;252:1080-4. CR - Abdul-Rahman T, Bukhari SMA, Herrera EC, Awuah WA, Lawrence J, de Andrade H et al. Lipid-lowering therapy: an era beyond statins. Curr Probl Cardiol. 2022;47:101342. CR - Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229-43. Erratum in: Circ Res. 2018;123:e20. CR - Okyay K. Pleiotropic effects of statins: new evidences. Turk Kardiyol Dern Ars. 2021;49:533-5. CR - Razavi AC, Mehta A, Sperling LS. Statin therapy for the primary prevention of cardiovascular disease: Pros. Atherosclerosis. 2022;356:41-5. CR - Wasim R, Ansari TM, Ahsan F, Siddiqui MH, Singh A, Shariq M, Parveen S. Pleiotropic benefits of statins in cardiovascular diseases. Drug Res (Stuttg). 2022;72:477-86. CR - López-Canales JS, Lozano-Cuenca J, López-Canales OA, Aguilar-Carrasco JC, Aranda-Zepeda L, López-Sánchez P et al. Pharmacological characterization of mechanisms involved in the vasorelaxation produced by rosuvastatin in aortic rings from rats with a cafeteria-style diet. Clin Exp Pharmacol Physiol. 2015;42:653-61. CR - Sönmez Uydeş-Doğan B, Topal G, Takir S, Ilkay Alp F, Kaleli D, Ozdemir O. Relaxant effects of pravastatin, atorvastatin and cerivastatin on isolated rat aortic rings. Life Sci. 2005;76:1771-86. CR - Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23:3346. CR - Verma K, Shukla R, Dwivedi J, Paliwal S, Sharma S. New insights on mode of action of vasorelaxant activity of simvastatin. Inflammopharmacology. 2023. doi:10.1007/s10787-023-01219-8. CR - Sahinturk S. Metformin relaxes rat thoracic aorta via nitric oxide, AMPK, potassium channels, and PKC. Iran J Basic Med Sci. 2023. doi:10.22038/ijbms.2023.69728.15179. CR - Sahinturk S. Elabela relaxes rat pulmonary artery and trachea via BKCa, KV, and KATP channels. Prostaglandins Other Lipid Mediat. 2023;167:106735. CR - Tan CS, Loh YC, Tew WY, Yam MF. Vasorelaxant effect of 3,5,4'-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology. 2020;28:869-75. CR - Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141-7. CR - Nurullahoğlu-Atalık KE, Kutlu S, Solak H, Koca RÖ. Cilostazol enhances atorvastatin-induced vasodilation of female rat aorta during aging. Physiol Int. 2007;104:226-34. CR - Nurullahoglu-Atalik KE, Oz M, Shafiyi A. Rosuvastatin-induced responses in calf cardiac vein. Bratisl Lek Listy. 2015;116:494-8. CR - Guresir MS, Nurullahoglu KE. Role of the nitric oxide on rosuvastatin-induced relaxation of the calf cardiac vein during cooling. Bratisl Lek Listy. 2014;115:753-6. CR - Castro MM, Rizzi E, Rascado RR, Nagassaki S, Bendhack LM, Tanus-Santos JE. Atorvastatin enhances sildenafil-induced vasodilation through nitric oxide-mediated mechanisms. Eur J Pharmacol. 2004;498:189-94. CR - Almukhtar H, Garle MJ, Smith PA, Roberts RE. Effect of simvastatin on vascular tone in porcine coronary artery: potential role of the mitochondria. Toxicol Appl Pharmacol. 2016;305:176-85. CR - Pérez-Guerrero C, Alvarez de Sotomayor M, Herrera MD, Marhuenda E. Endothelium modulates contractile response to simvastatin in rat aorta. Z Naturforsch C J Biosci. 2000;55:121-4. CR - Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol 2017;78:89-144. CR - Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol. 2017;7:485-581. CR - Ulusoy KG, Dogan MF, Cam SA, Arslan SO, Yildiz O. Propofol relaxes isolated rat aorta through BKCa activation. Ann Vasc Surg. 2019;60:397-406. CR - Mitzner W. Airway smooth muscle: the appendix of the lung. Am J Respir Crit Care Med. 2004;169:787-90. CR - Knox AJ, Tattersfield AE. Airway smooth muscle relaxation. Thorax. 1995;50:894-901. CR - Pereira-de-Morais L, Silva AA, da Silva RER, Ferraz Navarro DMDA, Melo Coutinho HD, Menezes IRA et al. Myorelaxant action of the Dysphania ambrosioides (L.) Mosyakin & Clemants essential oil and its major constituent α-terpinene in isolated rat trachea. Food Chem. 2020;325:126923. CR - Enilari O, Sinha S. The global impact of asthma in adult populations. Ann Glob Health. 2019;85:2. CR - Menezes PMN, Brito MC, de Paiva GO, Dos Santos CO, de Oliveira LM, de Araújo Ribeiro LA et al. Relaxant effect of Lippia origanoides essential oil in guinea-pig trachea smooth muscle involves potassium channels and soluble guanylyl cyclase. J Ethnopharmacol. 2018;220:16-25. CR - Memarzia A, Amin F, Saadat S, Jalali M, Ghasemi Z, Boskabady MH. The contribution of beta-2 adrenergic, muscarinic and histamine (H1) receptors, calcium and potassium channels and cyclooxygenase pathway in the relaxant effect of Allium cepa L. on the tracheal smooth muscle. J Ethnopharmacol. 2019;241:112012 UR - https://doi.org/10.17826/cumj.1279122 L1 - https://dergipark.org.tr/tr/download/article-file/3067765 ER -