TY - JOUR T1 - MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ TT - Investigation of Design Parameters Affecting Rise Time and Hydraulic Cylinder Force for Scissor Lifting Platform AU - Eser, Sezgin AU - Telli Çetin, Sevda PY - 2023 DA - August Y2 - 2023 DO - 10.17482/uumfd.1280594 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 2148-4155 SP - 507 EP - 522 VL - 28 IS - 2 LA - tr AB - Makaslı platformlar sahip oldukları basit mekanik yapısı ve üretim kolaylığı sebebiyle endüstride yaygın olarak kullanılmaktadır. Platform için gerek duyulan hidrolik kuvvet ve platformun yükselme süresi, tasarımda önemli faktörler arasında yer almaktadır. Bu çalışmada, platformun uzuv boyu, hidrolik silindirin mafsal konumları ve hidrolik hızı değişken parametreler olarak seçilmiştir. Parametreler için öngörülen farklı değerlerin platformun yükselme süresine ve platformda ihtiyaç duyulan hidrolik kuvvetine etkileri incelenmiştir. Ayrıca, parametre seçimlerinde hidrolik silindirin maksimum strok değeri bir tasarım sınırı olarak dikkate alınmıştır. Hidrolik kuvvet ifadesi hem Virtüel İşler Prensibi (VİP) hem de Virtüel Güçler Prensibi (VGP) ile elde edilerek statik ve dinamik hesaplar arasında oluşan farklar belirlenmiştir. Simülasyonlar sonucunda, farklı tasarım ölçüleri ve hidrolik hızları ile elde edilen sonuçlar karşılaştırılarak yükselme süresini ve hidrolik kuvveti minimize etmek için uygun geometri belirlenmiştir. KW - makaslı platform KW - virtüel işler prensibi KW - virtüel güçler prensibi N2 - Scissor lifting platforms are widely used in industry due to their simple mechanical structure and ease of production. The hydraulic force required for the platform and the rise time of the platform are among the important factors in the design. In this study, the length of the scissor arms, the joint positions of the hydraulic cylinder and the hydraulic speed were chosen as variable parameters. The effects of different values assigned to the parameters on the rise time of the platform and the hydraulic force required on the platform were investigated. In addition, the maximum stroke value of the hydraulic cylinder is considered as a design limit in parameter selections. The hydraulic force expression was obtained with both the Virtual Works Principle (VWP) and the Virtual Power Principle (VPP). Differences between static and dynamic calculations have been determined. Thus, by comparing the results obtained with different design dimensions and hydraulic speeds, the appropriate geometry was determined to minimize the rise time and hydraulic force. CR - 1. Bao, Z. (2019) Study on Simulation of System Dynamic Characteristics of Hydraulic Scissor Lift Based on Load-Sensing Control Technology. IOP Conference Series: Materials Science and Engineering, 612(4). https://doi.org/10.1088/1757-899X/612/4/042036 CR - 2. Channi, P., ve Tripathi, J. P. (2021) Design and Analysis of Hydraulic Scissor Lift. International Journal of Research in Engineering, Science and Management, 4(2), 56–61. CR - 3. Doçi, I., Lajqi, S., Makolli, S., ve Bibaj, B. (2021) Scissor lift dynamic analysis and motion regulation for the case of lifting with maximum load. International Scientific Journal “Trans & Motauto World,” 6(2), 38–42. CR - 4. Görkem Dengiz, C., Can Şenel, M., Yıldızlı, K., ve Koç, E. (2018) Design and Analysis of Scissor Lifting System by Using Finite Elements Method. Universal Journal of Materials Science, 6(2), 58–63. https://doi.org/10.13189/ujms.2018.060202 CR - 5. He, S., Ouyang, M., Gong, J., ve Liu, G. (2019) Mechanical simulation and installation position optimisation of a lifting cylinder of a scissors aerial work platform. The Journal of Engineering, 2019(13), 74–78. https://doi.org/10.1049/joe.2018.8961 CR - 6. Islam, M. T., Yin, C., Jian, S., ve Rolland, L. (2014) Dynamic analysis of Scissor Lift mechanism through bond graph modeling. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1393–1399. https://doi.org/10.1109/AIM.2014.6878277 CR - 7. Ismael, O. Y., Almaged, M., ve Mahmood, A. (2019) Quantitative Design Analysis of an Electric Scissor Lift. American Scientific Research Journal for Engineering, 59(1), 128–141. CR - 8. Paramasivam, V., Tilahun, S., Kerebih Jembere, A., ve Selvaraj, S. K. (2021) Analytical investigation of hydraulic scissor lift for modular industrial plants in ethiopia. Materials Today: Proceedings, 46, 7596–7601. https://doi.org/10.1016/j.matpr.2021.01.838 CR - 9. Rani, D., Agarwal, N., ve Tirth, V. (2015). Design and Fabrication of Hydraulic Scissor Lift. In MIT International Journal of Mechanical Engineering (Vol. 5, Issue 2). CR - 10. Rashid, H., Ariffin, M. K. A. M., Noh, M. H. M., Abdullah, A. H., Hamid, A. H. A., Jusoh, M. A. M., ve Othman, A. (2012) Design review of scissors lifts structure for commercial aircraft ground support equipment using Finite Element Analysis. Procedia Engineering, 41, 1696–1701. https://doi.org/10.1016/j.proeng.2012.07.370 CR - 11. Roys Jeyangel, A., Babu, M., ve Balasubramani, V. (2015) Design and Kinematic Analysis of Gear Powered Scissor Lift. In International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) (Vol. 12). CR - 12. Singh, M., Shrivastava, A. K., ve Patel, A. (2018). Design and Optimization of Portable Hydraulic Scissor Lift by Using FEA Method. International Journal of Recent Technology Science & Management, 3(3), 6–18. CR - 13. Stawinski, L., Zaczynski, J., Morawiec, A., Skowronska, J., ve Kosucki, A. (2021). Energy consumption structure and its improvement of low-lifting scissor capacity scissor lift. Energies, 14(5). https://doi.org/10.3390/en14051366 CR - 14. Sun, L. B., Wang, R. R., ve Li, X. X. (2014). Lifting force calculation and safty analysis of hydraulic scissor lift platform. Advanced Materials Research, 960–961, 1450–1454. https://doi.org/10.4028/www.scientific.net/AMR.960-961.1450 CR - 15. Tian, H., ve Zhang, Z. (2011). Design and simulation based on Pro/E for a hydraulic lift platform in scissors type. Procedia Engineering, 16, 772–781. https://doi.org/10.1016/j.proeng.2011.08.1153 CR - 16. Todorović, M., Bulatović, R., ve Markovic, G. (2021a) Finding the Optimal Shape of Hydraulic Scissors Lift Legs Using HHO Optimization Method. https://www.researchgate.net/publication/353072053 CR - 17. Todorović, M., Zdravković, N. B., Savković, M., Marković, G., ve Pavlović, G. (2021b) Optimization of Scissor Mechanism Lifting Platform Members Using HHO Method. The Eight International Conference Transport and Logistics, 91–96. CR - 18. Yimer, W., ve Wang, Y. (2019) Design, Analysis and Manufacturing of Double Scissors Lift Elevated by One Hydraulic Cylinder. International Journal of Engineering Research & Technology, 8(11), 709–713. CR - 19. Zhang, W., Zhang, X., Yan, C., Xiang, S., ve Wang, L. (2015) A characteristic triangle method on input vectors of scissor lift mechanism and its applications in modeling and analysis. Journal of Advanced Mechanical Design, Systems and Manufacturing, 9(3). https://doi.org/10.1299/jamdsm.2015jamdsm0042 CR - 20. Zhang, W., ve Zhao, J. (2016) Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86(1), 17–36. https://doi.org/10.1007/s11071-016-2869-z UR - https://doi.org/10.17482/uumfd.1280594 L1 - http://dergipark.org.tr/tr/download/article-file/3073840 ER -