TY - JOUR T1 - Review of Nitrogen Oxides (NOx) Reduction Methods Used on Marine Diesel Engine TT - Gemi Dizel Motorunda Azot Oksitleri (NOx) İndirgeme Yöntemlerinin İncelenmesi AU - Okumuş, Fatih AU - Kökkülünk, Görkem PY - 2023 DA - June DO - 10.58771/joinmet.1294204 JF - Journal of Marine and Engineering Technology JO - JOINMET PB - Sakarya Uygulamalı Bilimler Üniversitesi WT - DergiPark SN - 2791-7134 SP - 34 EP - 44 VL - 3 IS - 1 LA - en AB - Reducing nitrogen oxide (NOx) emissions is of great importance in terms of environmental sustainability and air quality. This study is a review that examines various applications aimed at reducing NOx emissions. Below is a summary of the evaluation of technologies, including the common rail system, exhaust gas recirculation (EGR), Miller cycle, direct water injection, emulsified fuel, and selective catalytic reduction (SCR). The common rail system, EGR, and Miller cycle can generally be considered as combustion control-based methods for reducing NOx within the cylinder. Direct water injection and emulsified fuel aim to lower temperatures inside the cylinder by utilizing the high internal heat of evaporation of water. Selective catalytic reduction is a technology where NOx in the exhaust gas is converted into nitrogen gas and water vapor through the use of a catalyst. This study evaluates the effectiveness and applicability of various technologies used to reduce NOx emissions. Each method may have different advantages and disadvantages. Additionally, there may be certain limitations and variations depending on the application areas of these methods. Therefore, a careful assessment is necessary to determine the most suitable technology or combination of technologies for reducing NOx emissions. KW - Marine diesel engine KW - NOx KW - EGR KW - Emulsified fuel KW - SCR N2 - Azot oksit emisyonlarının azaltılması, çevresel sürdürülebilirlik ve hava kalitesi açısından büyük önem taşıyan bir konudur. Bu çalışma, NOx emisyonlarını azaltmaya yönelik çeşitli teknolojilerin incelendiği bir derleme çalışmasıdır. Aşağıda, common rail sistemi, egzoz gazlarının geri dönüşümü, Miller çevrimi, suyun direct enjeksiyonu, emülsife yakıt ve seçici katalitik indirgeme gibi teknolojilerin incelenmesine yönelik bir özet sunulmuştur. Common rail sistemi, egzoz gazlarının geri dönüşü ve miller çevrimi genel olarak silindir içindeki yanmanın kontrolüne dayalı NOx indirgeme yöntemleri olarak düşünülebilir. Su enjeksiyonu ve emülsife yakıt ise suyun yüksek buharlaşma iç ısısından faydalanarak silindir içindeki sıcaklıkların düşürülmesini amaçlamaktadır. Seçici katalitik indirgeme ise egzoz gazında bulunan NOx'un bir katalizör yardımıyla azot gazına ve su buharına dönüştürüldüğü bir teknolojidir. Bu çalışma, NOx emisyonlarını azaltmak için kullanılan çeşitli teknolojilerin etkinliğini ve uygulanabilirliğini değerlendirmektedir. Her bir yöntem, farklı avantajlara ve dezavantajlara sahip olabilmektedir. Bunun yanında, yöntemlerin bazı kısıtlamaları da olabilir ve uygulama alanlarına bağlı olarak farklılık gösterebilir. Bu nedenle, NOx emisyonlarının azaltılması için en uygun teknoloji veya teknoloji kombinasyonunu belirlemek için dikkatli bir değerlendirme yapılması gerekmektedir. CR - Akinpelu, A., Alam, M. S., Shafiullah, M., Rahman, S. M., & Al-Ismail, F. S. (2023). Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction. Sustainability, 15(7), Article 7. https://doi.org/10.3390/su15075639 CR - Ayhan, V. (2016). Direk Enjeksiyonlu Bir Dizel Motoruna Buhar ve Farklı Şekillerde Su Gönderiminin Performans ve NOx Emisyonlarına Etkilerinin İncelenmesi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 20. https://doi.org/10.16984/saufenbilder.91773 CR - Ayhan, V. (2020). Investigation of electronic controlled direct water injection for performance and emissions of a diesel engine running on sunflower oil methyl ester. Fuel, 275, 117992. https://doi.org/10.1016/j.fuel.2020.117992 CR - Ayhan, V., & Ece, Y. M. (2020). New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke. Applied Energy, 260, 114328. https://doi.org/10.1016/j.apenergy.2019.114328 CR - Badami, M., Millo, F., & D’Amato, D. D. (2001). Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection. SAE Transactions, 110, 663–674. CR - Bedford, F., Rutland, C., Dittrich, P., Raab, A., & Wirbeleit, F. (2000). Effects of Direct Water Injection on DI Diesel Engine Combustion. https://doi.org/10.4271/2000-01-2938 CR - Chehrmonavari, H., Kakaee, A., Hosseini, S. E., Desideri, U., Tsatsaronis, G., Floerchinger, G., Braun, R., & Paykani, A. (2023). Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renewable and Sustainable Energy Reviews, 171, 112982. https://doi.org/10.1016/j.rser.2022.112982 CR - DieselNet: Engine Emission Standards. (n.d.). Retrieved 20 June 2023, from https://dieselnet.com/standards/ CR - Esakki, T., Rangaswamy, S. M., & Jayabal, R. (2022). An experimental study on biodiesel production and impact of EGR in a CRDI diesel engine propelled with leather industry waste fat biodiesel. Fuel, 321, 123995. https://doi.org/10.1016/j.fuel.2022.123995 CR - Feng, S., Li, Z., Shen, B., Yuan, P., Ma, J., Wang, Z., & Kong, W. (2022). An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust. Journal of Environmental Management, 317, 115457. https://doi.org/10.1016/j.jenvman.2022.115457 CR - Gonca, G., & Genc, I. (2021). Effects of liquid fuels and alcohols on the pollutant emissions of a spark ignition engine. International Journal of Global Warming, 23(4), 385–396. https://doi.org/10.1504/IJGW.2021.114344 CR - Gonca, G., Sahin, B., Parlak, A., Ayhan, V., Cesur, İ., & Koksal, S. (2015). Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 93, 795–800. https://doi.org/10.1016/j.energy.2015.08.032 CR - Gonca, G., Sahin, B., Parlak, A., Ust, Y., Ayhan, V., Cesur, İ., & Boru, B. (2015). Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 138, 11–20. https://doi.org/10.1016/j.apenergy.2014.10.043 CR - Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285–290. https://doi.org/10.1016/j.energy.2013.02.004 CR - Görkem KÖKKÜLÜNK. (2012). "Su buharı enjeksiyonlu bir dizel motorunda egzoz gazları geri dolaşımının (EGR) performans ve emisyonlara etkilerinin incelenmesi [Tez]. Yıldız Teknik Üniversitesi. CR - Gowrishankar, S., J, P. B., Rastogi, P., & Krishnasamy, A. (2020). Investigations on NOx and Smoke Emissions Reduction Potential through Water-in-Diesel Emulsion and Water Fumigation in a Small-Bore Diesel Engine (SAE Technical Paper No. 2020-32–2312). SAE International. https://doi.org/10.4271/2020-32-2312 CR - Hountalas, D. T., Mavropoulos, G. C., & Zannis, T. C. (2007, April 16). Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines. SAE World Congress & Exhibition. https://doi.org/10.4271/2007-01-0120 CR - IMO|Marine Commercial|YANMAR. (n.d.). YANMAR. Retrieved 12 October 2019, from https://www.yanmar.com/global/marinecommercial/imo/index.html CR - Li, C., Wang, Y., Jia, B., & Roskilly, A. P. (2019). Application of Miller cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – A numerical approach with model validations. Applied Thermal Engineering, 150, 904–911. https://doi.org/10.1016/j.applthermaleng.2019.01.056 CR - Ma, X., Zhang, F., Han, K., Zhu, Z., & Liu, Y. (2014). Effects of Intake Manifold Water Injection on Combustion and Emissions of Diesel Engine. Energy Procedia, 61, 777–781. https://doi.org/10.1016/j.egypro.2014.11.963 CR - Mohd Tamam, M. Q., Yahya, W. J., Ithnin, A. M., Abdullah, N. R., Kadir, H. A., Rahman, M. M., Rahman, H. A., Abu Mansor, M. R., & Noge, H. (2023). Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion. Energy, 268, 126704. https://doi.org/10.1016/j.energy.2023.126704 CR - Nielsen, K. V., Blanke, M., & Vejlgaard-Laursen, M. (2015). Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines. IFAC-PapersOnLine, 48(16), 254–260. https://doi.org/10.1016/j.ifacol.2015.10.289 CR - Park, J., & Oh, J. (2022). Study on the characteristics of performance, combustion, and emissions for a diesel water emulsion fuel on a combustion visualization engine and a commercial diesel engine. Fuel, 311, 122520. https://doi.org/10.1016/j.fuel.2021.122520 CR - Patil, V., & Thirumalini, S. (2021). Effect of cooled EGR on performance and emission characteristics of diesel engine with diesel and diesel-karanja blend. Materials Today: Proceedings, 46, 4720–4727. https://doi.org/10.1016/j.matpr.2020.10.303 CR - Rajesh kumar, B., & Saravanan, S. (2015). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160, 217–226. https://doi.org/10.1016/j.fuel.2015.07.089 CR - Ranganatha Swamy, L., Banapurmath, N. R., Harari, P. A., Chandrashekar, T. K., Keerthi, B. L., C, H., Naveen, S. S., Hemaraju, Katti, B. B., & Kulkarni, P. S. (2022). Diesel engine performance fuelled with manifold injection of ethanol and water-in-diesel emulsion blends. Materials Today: Proceedings, 66, 1914–1919. https://doi.org/10.1016/j.matpr.2022.05.419 CR - Şahin, Z., Tuti, M., & Durgun, O. (2014). Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel, 115, 884–895. https://doi.org/10.1016/j.fuel.2012.10.080 CR - Schommers, J., Duvinage, F., Stotz, M., Peters, A., Ellwanger, S., Koyanagi, K., & Gildein, H. (2000). Potential of Common Rail Injection System for Passenger Car DI Diesel Engines. SAE Transactions, 109, 1030–1038. JSTOR. CR - Singh, E., Hlaing, P., & Dibble, R. W. (2020). Investigating Water Injection in Single-Cylinder Gasoline Spark-Ignited Engines at Fixed Speed. Energy & Fuels, 34(12), 16636–16653. https://doi.org/10.1021/acs.energyfuels.0c03057 CR - Tauzia, X., Maiboom, A., & Shah, S. R. (2010). Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy, 35(9), 3628–3639. https://doi.org/10.1016/j.energy.2010.05.007 CR - Wang, Y., Lin, L., Roskilly, A. P., Zeng, S., Huang, J., He, Y., Huang, X., Huang, H., Wei, H., Li, S., & Yang, J. (2007). An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Applied Thermal Engineering, 27(11), 1779–1789. https://doi.org/10.1016/j.applthermaleng.2007.01.013 CR - Wang, Z., Zhou, S., Feng, Y., & Zhu, Y. (2017). Research of NOx reduction on a low-speed two-stroke marine diesel engine by using EGR (exhaust gas recirculation)–CB (cylinder bypass) and EGB (exhaust gas bypass). International Journal of Hydrogen Energy, 42(30), 19337–19345. https://doi.org/10.1016/j.ijhydene.2017.06.009 CR - Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067–2072. https://doi.org/10.1016/j.egypro.2012.01.314 CR - Zhang, Y., Xia, C., Liu, D., Zhu, Y., & Feng, Y. (2023). Experimental investigation of the high-pressure SCR reactor impact on a marine two-stroke diesel engine. Fuel, 335, 127064. https://doi.org/10.1016/j.fuel.2022.127064 CR - Zhou, S., Gao, R., Feng, Y., & Zhu, Y. (2017). Evaluation of Miller cycle and fuel injection direction strategies for low NOx emission in marine two-stroke engine. International Journal of Hydrogen Energy, 42(31), 20351–20360. https://doi.org/10.1016/j.ijhydene.2017.06.020 CR - Zhu, S., Hu, B., Akehurst, S., Copeland, C., Lewis, A., Yuan, H., Kennedy, I., Bernards, J., & Branney, C. (2019). A review of water injection applied on the internal combustion engine. Energy Conversion and Management, 184, 139–158. https://doi.org/10.1016/j.enconman.2019.01.042 CR - Zhu, Y., Zhou, W., Xia, C., & Hou, Q. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere, 13(5), Article 5. https://doi.org/10.3390/atmos13050731 UR - https://doi.org/10.58771/joinmet.1294204 L1 - https://dergipark.org.tr/tr/download/article-file/3130044 ER -