TY - JOUR T1 - Homoderivations and Their Impact on Lie Ideals in Prime Rings AU - Güven, Evrim PY - 2023 DA - December Y2 - 2023 DO - 10.38061/idunas.1356057 JF - Natural and Applied Sciences Journal JO - IDU Natural and Applied Sciences Journal (IDUNAS) PB - İzmir Demokrasi Üniversitesi WT - DergiPark SN - 2645-9000 SP - 41 EP - 48 VL - 6 IS - 2 LA - en AB - Assume we have a prime ring denoted as $R$, with a characteristic distinct from two. The concept of a homoderivation refers to an additive map $Η$ of a ring $R$ that satisfies the property $Η(r_1 r_2 )=Η(r_1 ) r_2+r_1 Η(r_2 )+Η(r_1 )Η(r_2 )$, $\forall r_1,r_2 \in R$. This article aims to obtain results for prime rings, ideals, and Lie ideals by utilizing the concept of homoderivation in conjunction with the established theory of derivations. KW - Prime ring KW - Homoderivation KW - Lie ideal KW - Jordan ideal. CR - 1. Alharfie E. F., Muthana N. M. (2018). The commutativity of prime rings with homoderivations, Int. J. of Adv. and App. Sci., 5(5), 79-81. CR - 2. Awtar R. (1984). Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc., 90, 1, 9-14. CR - 3. Atteya M. J. (2022). Homogeneralized (σ,τ)-Derivations of Associative Rings, Studies on Scientific Developments in Geometry, Algebra, and Applied Mathematics, 52. CR - 4. Bergen J., Herstein I. N., Kerr J. (1981). Lie Ideals and derivations of Prime Rings, Journal of Algebra, 71, 259-267. CR - 5. Divinsky N. (1965). Rings and Radicals, University of Toronto Press, Toronto. CR - 6. Ebrahimi M. M., Pajoohesh H. (2003). Inner derivations and homoderivations on ϱ-Rings, Acta Math. Hungar., 100, 157-165. CR - 7. El-Soufi M. M. and Ghareeb A. (2022). Centrally Extended α-Homoderivations on Prime and Semiprime Rings, Journal of Mathematics. CR - 8. El Sofy, M. M. (2000). Rings with some kinds of mappings, M.Sc. Thesis, Cairo University, Branch of Fayoum, Egypt. CR - 9. Engin A., Aydın, N. (2023). Homoderivations in Prime Rings, Journal of New Theory, 43, 23-24. CR - 10. Güven E. (2019). Some Results on Left (σ,τ)-Jordan Ideals and one sided Generalized Derivations, TWMS J. App. and Eng. Math., 9, 1, 22-29. CR - 11. Herstein, I.N. (1979). A Note On Derivations II, Canad. Math. Bull., 22 (4), 509-511. CR - 12. Lee P. H., Lee T.K., (1981). On Derivations of Prime Rings Chinese Journal of Mathematics, 9, 2, 107-110. CR - 13. Mayne, J. H. (1984). Centralizing Mappings of Prime Rings, Canadian Mathematical Bulletin 27 (1), 122--126. CR - 14. Mouhssine S. and Boua A. (2021). Homoderivations and Semigroup Ideals in 3-Prime Near-Rings, Algebraic Str. and Their App. 8, No. 2, 177-194. CR - 15. Posner E. C. (1957). Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100. CR - 16. Rehman N., Mozumder M. R., Abbasi A. (2019). Homoderivations on ideals of prime and semiprime rings, The Aligarh Bull. of Math., 38-1, 77-87. CR - 17. Aydın N., Kaya K. (1992). Some Generalizations in Prime Rings with (σ,τ)-Derivation, Doğa-Tr. J. Mathematics, 16, 169-176. CR - 18. Bresar M. (1991). On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89-93. UR - https://doi.org/10.38061/idunas.1356057 L1 - http://dergipark.org.tr/tr/download/article-file/3389207 ER -