TY - JOUR T1 - Al2O3 Recovery From Waste Tetra Pak Packages TT - Atık Tetra Pak Paketlerinden Al2O3 Geri Kazanımı AU - Öncel, Levent AU - Buğdaycı, Mehmet AU - Turan, Ahmet AU - Bayıroğlu, Fatih PY - 2023 DA - December JF - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi PB - Erciyes Üniversitesi WT - DergiPark SN - 1012-2354 SP - 463 EP - 474 VL - 39 IS - 3 LA - en AB - In this study, it was aimed to obtain Al2O3 from waste Tetra Pak packages by using the hydrometallurgical method. Tetra Pak recycling has become an increasingly researched topic around the world. Cellulose, polyethylene and aluminum, which form the structure of Tetra Pak packages, are raw materials that can be reused after recycling. Cellulose was separated from Tetra Pak's structure by hydropulping process and polyethylene was separated from Tetra Pak's structure by leaching with HCl, and optimum parameters of these processes were investigated in experimental studies. Aluminum in the structure was dissolved in acid solution with 100% efficiency in the experiments carried out with 0.1750 M and 0.1312 M acid concentration. Aluminum, which was dissolved in acid solution, was obtained as the AlCl3 phase and precipitated as Al(OH)3 with the addition of 100% stoichiometric NaOH, and the precipitates were calcined at 950 °C for 1 hour to obtain the Al2O3 structure. The materials used in the experimental studies and the products obtained as a result of these experiments were analyzed by Atomic Absorption Spectrometry (AAS), Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM) / Energy-Dispersive X-ray Spectroscopy (EDS), and optical microscopy techniques. KW - Aluminum KW - Tetra Pak KW - Recycling N2 - Bu çalışmada atık Tetra Pak ambalajlarından hidrometalurjik yöntem kullanılarak Al2O3 elde edilmesi amaçlanmıştır. Tetra Pak geri dönüşümü, dünya çapında giderek daha fazla araştırılan bir konu haline gelmiştir. Tetra Pak ambalajlarının yapısını oluşturan selüloz, polietilen ve alüminyum, geri dönüştürülerek yeniden kullanılabilen hammaddelerdir. Tetra Pak’ın yapısından selüloz hidropulping prosesi ile, polietilen ise HCl ile liç prosesiyle ayrıştırılmış ve deneysel çalışmalarda bu prosesler için optimum parametreler araştırılmıştır. Yapıdaki alüminyum, 0,1750 M ve 0,1312 M asit konsantrasyonuyla yapılan deneylerde %100 verimle çözünmüştür. Asit çözeltisinde çözünen alüminyum, AlCl3 fazı olarak elde edilmiş ve %100 stokiyometrik NaOH ilavesiyle Al(OH)3 olarak çöktürülmüştür. Bu çökeltiler Al2O3 yapısı elde etmek için 950 °C'de 1 saat kalsine edilmiştir. Deneysel çalışmalarda kullanılan malzemelerin ve bu deneyler sonucunda elde edilen ürünlerin analizleri Atomik Absorbsiyon Spektroskopisi (AAS), Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi, Taramalı Elektron Mikroskobu (SEM) / Enerji Saçılımlı X-Işını Spektroskopisi (EDS) ve optik mikroskopi teknikleriyle gerçekleştirilmiştir. CR - [1] Haydary, J., Susa, D., Dudás, J. 2013. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. Waste Management, 33(5), 1136-1141. CR - [2] Solak, A., Rutkowski, P. 2014. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Waste Management, 34(2), 504-512. CR - [3] Rodríguez-Gómez, J.E., Silva-Reynoso, Y.Q., Varela-Guerrero, V., Núñez-Pineda, A., Barrera-Díaz, C.E. 2015. Development of a process using waste vegetable oil for separation of aluminum and polyethylene from Tetra Pak. Fuel , 149, 90-94. CR - [4] Hidalgo-Salazar, M.A. 2011. Manufacturing rigid board by packaging waste containing aluminum and polyethylene. Journal of Scientific & Industrial Research, 70(3), 232-234. CR - [5] Abreu, M. Recycling of tetra pak aseptic cartons. https://d3pcsg2wjq9izr.cloudfront.net/files/0/articles/2268/tetrapak.pdf (Accessed 01.04.2022). CR - [6] Zhang, M., Kamavaram, V., Reddy, R.G. 2003. New electrolytes for aluminum production: ionic liquids. The Journal of The Minerals, Metals & Materials Society (TMS), 55, 54-57. CR - [7] Satish Reddy, M., Neeraja, D. 2018. Aluminum residue waste for possible utilisation as a material: a review. Sadhana, 43, 124. CR - [8] Capuzzi, S., Timelli, G. 2018. Preparation and melting of scrap in aluminum recycling: A review. Metals 8(4), 249. CR - [9] Araghchi, M., Mansouri, H., Vafaei, R., Guo, Y. 2018. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment. Journal of Materials Engineering and Performance, 27, 3234–3238. CR - [10] Senel, M.C., Gurbuz, M., Koc, E. 2015. New generation composites with graphene reinforced aluminum matrix. Journal of Engineers and Machinery, 56, 36-47. CR - [11] Balomenos, E., Panias, D., Paspaliaris, I. 2011. Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability. Mineral Processing and Extractive Metallurgy Review 32(2), 69-89. CR - [12] Poulimenou, N.I., Giannopoulou, I., Panias, D. 2015. Use of ionic liquids as innovative solvents in primary aluminum production. Materials and Manufacturing Processes, 30(12), 1403-1407. CR - [13] Atik, E. 1998. Mechanical properties and wear strengths in aluminium-alumina composites. Materials and Structures, 31, 418-422. CR - [14] Hind, A.R., Bhargava, S.K., Grocott, S.C. 1999. The surface chemistry of Bayer process solids: A review. Colloids Surf. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374. CR - [15] Ayrilmis, N., Kaymakci, A., Akbulut, T., Elmas, G.M. 2013. Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 47, 150-154. CR - [16] Lopes, C.M.A., Felisberti M.I. 2006. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of Applied Polymer Science, 101, 3183-3191. CR - [17] Alvarenga, L.M., Xavier, T.P., Barrozo, M.A.S., Bacelos, M.S., Lira, T.S. 2012. Analysis of reaction kinetics of carton packaging pyrolysis. Procedia Engineering, 42, 113-122. CR - [18] Kaiser, K., Schmid, M., Schlummer, M. 2018. Recycling of polymer-based multilayer packaging: A review. Recycling, 3, 1. CR - [19] Siddiqui, M.Z., Han, T.U., Park, Y.K., Kim, Y.M., Kim, S. 2020. Catalytic pyrolysis of tetra pak over acidic catalysts. Catalyst, 10(6), 602. CR - [20] Korkmaz, A., Yanik, J., Brebu, M., Vasile, C. 2009. Pyrolysis of the tetra pak, Waste Management, 29(11), 2836-2841. CR - [21] Akoglu, B., Azgi, K., Ozpekturk, A., Incir, S., Copur, M., Turan, A. 2016. Production of Polyethylene – Aluminum Composites from Waste Tetra Pak Packages. IMMC 2016, 18th International Metallurgy & Materials Congress, 29 September – 1 October, Istanbul, 359-362. UR - https://dergipark.org.tr/tr/pub/erciyesfen/issue//1359085 L1 - https://dergipark.org.tr/tr/download/article-file/3402614 ER -