TY - JOUR T1 - Piezoelectric performance of co-axial electrospun PVDF/TPU nanofiber mats TT - Koaksiyel elektrospun PVDF/TPU nanofiber matların piezoelektrik performansı AU - Borazan, İsmail PY - 2024 DA - January DO - 10.61112/jiens.1368591 JF - Journal of Innovative Engineering and Natural Science JO - JIENS PB - İdris Karagöz WT - DergiPark SN - 2791-7630 SP - 188 EP - 197 VL - 4 IS - 1 LA - en AB - Energy demand is increasing daily by the improving technology and energy dependent devices such as wearable electronics. Nanogenerators have been studied by the researchers for the last 20 years intensively. Nanofiber and polymer based devices are the most popular ones among the others. A core-shell nanofiber structure was proposed in this study and the ratio of the core to the shell structure was produced. Diameter of the nanofibers and piezoelectric performances were characterized and compared with each other. As result, a maximum voltage of 2.1 V, maximum voltage of 28.28 µA, a maximum power of 31.31 µW, and a maximum power density of 184.17 µW/g.cm-2 were obtained from the maximum ratio of 3:1 (PVDF:TPU). KW - piezoelectric KW - nanofiber KW - smart textile KW - co-axial electrospinning KW - flexible nanogenerator N2 - Gelişen teknoloji ve giyilebilir elektronikler gibi enerjiye bağımlı cihazlarla birlikte enerji talebi her geçen gün artmaktadır. Nanojeneratörler son 20 yıldır araştırmacılar tarafından yoğun bir şekilde çalışılmaktadır. Nanolif ve polimer bazlı cihazlar bunlar arasında en popüler olanlardır. Bu çalışmada çekirdek-kabuk nanofiber yapısı önerilmiş ve çekirdeğin kabuk yapısına oranı üretilmiştir. Nanoliflerin çapı ve piezoelektrik performansları karakterize edildi ve birbirleriyle karşılaştırıldı. Sonuç olarak maksimum 3:1 oranından maksimum 2,1 V voltaj, maksimum voltaj 28,28 µA, maksimum 31,31 µW güç ve maksimum 184,17 µW/g.cm-2 güç yoğunluğu elde edildi (PVDF: TPU). CR - Wei L, Qin X (2016) Nanofiber bundles and nanofiber yarn device and their mechanical properties: A review. Textile Research Journal 86:1885–1898. https://doi.org/10.1177/0040517515617422 CR - Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7 CR - Yang Y, Quan Z, Zhang H, Qin X, Wang R, Yu J (2022) Investigation on the processability, structure and properties of micro-/ nano-fiber composite yarns produced by trans-scale spinning. 51:5409–5426. https://doi.org/10.1177/1528083720941177 CR - Wu S, Zhou R, Zhou F, Streubel PN, Chen S, Duan B (2020) Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. Materials Science and Engineering: C 106:110268. https://doi.org/10.1016/J.MSEC.2019.110268 CR - Sabantina L, Klö Cker M, Wortmann M, Rodríguez Mirasol J, Cordero T, Moritzer E, Finsterbusch K, Ehrmann A (2020) Stabilization of polyacrylonitrile nanofiber mats obtained by needleless electrospinning using dimethyl sulfoxide as solvent. 50:224–239. https://doi.org/10.1177/1528083718825315 CR - Du L, Zhang Y, Li X, Wang J, Chen M, Zuo X, Yang W, Yousefzadeh M, Ramakrishana S, Li H (2020) High performance anti-smog window screens via electrospun nanofibers. J Appl Polym Sci 137:48657. https://doi.org/10.1002/APP.48657 CR - Li X, Li Y, Li Y, He J (2020) Gecko-like adhesion in the electrospinning process. Results Phys 16:102899. https://doi.org/10.1016/J.RINP.2019.102899 CR - Faruk Ünsal Ö, Çelik Bedeloğlu A (2018) Recent Trends in Flexible Nanogenerators: A review. Material Science Research India. https://doi.org/10.13005/msri/150202 CR - Ünsal ÖF, Altın Y, Çelik Bedeloğlu A (2020) Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. J Appl Polym Sci 137:. https://doi.org/10.1002/APP.48517 CR - Ünsal ÖF, Altın Y, Çelik Bedeloğlu A (2023) Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes. J Electron Mater 52:2053–2061. https://doi.org/10.1007/S11664-022-10169-W/FIGURES/7 CR - Wu J, Chu C-C (2012) Block copolymer of poly(ester amide) and polyesters: Synthesis, characterization, and in vitro cellular response. https://doi.org/10.1016/j.actbio.2012.07.027 CR - Wu H, Fan J, Chu CC, Wu J (2010) Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med 21:3207–3215. https://doi.org/10.1007/S10856-010-4164-8 CR - Lubasova D, Netravali A, Parker J, Ingel B (2014) Bacterial filtration efficiency of green soy protein based nanofiber air filter. J Nanosci Nanotechnol 14:4891–4898. https://doi.org/10.1166/JNN.2014.8729 CR - Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S (2022) A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. Journal of Biological Engineering 2022 16:1 16:1–18. https://doi.org/10.1186/S13036-022-00286-9 CR - Mohammadi Zerankeshi M, Bakhshi R, Alizadeh R (2022) Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting 25:e00191. https://doi.org/10.1016/J.BPRINT.2022.E00191 CR - Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y (2022) A review of preparation methods of porous skin tissue engineering scaffolds. Mater Today Commun 32:104109. https://doi.org/10.1016/J.MTCOMM.2022.104109 CR - Gao J, Feng L, Chen B, Fu B, Zhu M (2022) The role of rare earth elements in bone tissue engineering scaffolds - A review. Compos B Eng 235:109758. https://doi.org/10.1016/J.COMPOSITESB.2022.109758 CR - Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El-Hamshary H, El-Newehy M (2023) Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polym Adv Technol 34:6–23. https://doi.org/10.1002/PAT.5884 CR - Talebi N, Lopes D, Lopes J, Macário-Soares A, Dan AK, Ghanbari R, Kahkesh KH, Peixoto D, Giram PS, Raza F, Veiga F, Sharifi E, Hamishehkar H, Paiva-Santos AC (2023) Natural polymeric nanofibers in transdermal drug delivery. Appl Mater Today 30:101726. https://doi.org/10.1016/J.APMT.2022.101726 CR - Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L (2023) Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023, Vol 15, Page 1829 15:1829. https://doi.org/10.3390/PHARMACEUTICS15071829 CR - Jiffrin R, Razak SIA, Jamaludin MI, Hamzah ASA, Mazian MA, Jaya MAT, Nasrullah MZ, Majrashi M, Theyab A, Aldarmahi AA, Awan Z, Abdel-Daim MM, Azad AK (2022) Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers 2022, Vol 14, Page 3725 14:3725. https://doi.org/10.3390/POLYM14183725 CR - Yuan Z, Zhang J, Zhao X, Liu S, Yu S, Liu X, Zhang X, Yi X (2023) A multifunctional PAN/PVP nanofiber sponge wound dressing loaded with ZIF-8-derived carbon nanoparticles with adjustable wetness for rapid wound disinfection and exudate management. J Mater Chem B 11:8216–8227. https://doi.org/10.1039/D3TB01119D CR - Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F (2022) Wound Healing: An Overview of Wound Dressings on Health Care. Curr Pharm Biotechnol 24:1079–1093. https://doi.org/10.2174/1389201023666220913153725 CR - Chen K, Hu H, Zeng Y, Pan H, Wang S, Zhang Y, Shi L, Tan G, Pan W, Liu H (2022) Recent advances in electrospun nanofibers for wound dressing. Eur Polym J 178:111490. https://doi.org/10.1016/J.EURPOLYMJ.2022.111490 CR - Rezvani Ghomi E, Khosravi F, Neisiany RE, Shakiba M, Zare M, Lakshminarayanan R, Chellappan V, Abdouss M, Ramakrishna S (2022) Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr Opin Biomed Eng 22:100393. https://doi.org/10.1016/J.COBME.2022.100393 CR - Huang C, Xu X, Fu J, Yu DG, Liu Y (2022) Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers 2022, Vol 14, Page 3266 14:3266. https://doi.org/10.3390/POLYM14163266 CR - Zi Y, Wang ZL (2017) Nanogenerators: An emerging technology towards nanoenergy. APL Mater 5:074103. https://doi.org/10.1063/1.4977208 CR - Zhang X (2019) Overview of Triboelectric Nanogenerators. Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-powered Systems 1–18. https://doi.org/10.1002/9783527820153.CH1 CR - Ünsal ÖF, Çelik Bedeloğlu A (2018) Conducting Polymer Based Nanogenerators. Afyon Kocatepe University Journal of Sciences and Engineering. https://doi.org/10.5578/fmbd.67348 CR - Bai S, Zhang L, Xu Q, Zheng Y, Qin Y, Wang ZL (2013) Two dimensional woven nanogenerator. Nano Energy 2:749–753. https://doi.org/10.1016/J.NANOEN.2013.01.001 CR - Lu L, Ding W, Liu J, Yang B (2020) Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78:105251. https://doi.org/10.1016/J.NANOEN.2020.105251 CR - Liu Z, Li H, Shi B, Fan Y, Wang ZL, Li Z (2019) Wearable and Implantable Triboelectric Nanogenerators. Adv Funct Mater 29:1–19. https://doi.org/10.1002/adfm.201808820 CR - Lee M, Chen C-Y, Wang S, Nam Cha S, Jun Park Y, Min Kim J, Chou L-J, Lin Wang Z, Lee M, Chen C, Wang S, Wang ZL, Chou L, Cha SN, Park YJ, Kim JM (2012) A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials 24:1759–1764. https://doi.org/10.1002/ADMA.201200150 CR - Ahmed A, Hassan I, Mosa IM, Elsanadidy E, Phadke GS, El-Kady MF, Rusling JF, Selvaganapathy PR, Kaner RB (2019) All printable snow-based triboelectric nanogenerator. Nano Energy 60:17–25. https://doi.org/10.1016/j.nanoen.2019.03.032 CR - Zhou T, Zhang C, Han CB, Fan FR, Tang W, Wang ZL (2014) Woven structured triboelectric nanogenerator for wearable devices. ACS Appl Mater Interfaces 6:14695–14701. https://doi.org/10.1021/am504110u CR - Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh J, Ryu C, Yoo WJ, Kang CY, Yoon SJ, Yoo JB, Kim SW (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Advanced Materials 26:765–769. https://doi.org/10.1002/adma.201303570 CR - Joy N, Venugopal D, Samavedi S (2022) Robust strategies to reduce burst and achieve tunable control over extended drug release from uniaxially electrospun composites. Eur Polym J 168:111102. https://doi.org/10.1016/J.EURPOLYMJ.2022.111102 CR - Jiang K, Liu G, Cheng Z, Sun M, Liu Y, Jiao K, Jia W, Wang S, Dai Z, Yang Y, Liu L, Yang T, Jiang X, Luo Y, Liu Z (2023) Potential of uniaxial electrospun composite nanofibers based on polycaprolactone and polyvinyl alcohol in guided bone regeneration. J Appl Polym Sci 140:e54313. https://doi.org/10.1002/APP.54313 CR - Li R, Cheng Z, Yu X, Wang S, Han Z, Kang L (2019) Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Mater Lett 254:206–209. https://doi.org/10.1016/J.MATLET.2019.07.075 CR - Zhang M, Liu C, Li B, Shen Y, Wang H, Ji K, Mao X, Wei L, Sun R, Zhou F (2566) Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv 5:1043–1059. https://doi.org/10.1039/D2NA00773H CR - Di Li, Wang C, Cui X, Chen D, Fei C, Yang Y (2022) Recent progress and development of interface integrated circuits for piezoelectric energy harvesting. Nano Energy 94:106938. https://doi.org/10.1016/J.NANOEN.2022.106938 CR - Bae J, Song J, Jeong W, Nandanapalli KR, Son N, Zulkifli NAB, Gwon G, Kim M, Yoo S, Lee H, Choi H, Lee S, Cheng H, Kim C, Jang KI, Lee S (2022) Multi-deformable piezoelectric energy nano-generator with high conversion efficiency for subtle body movements. Nano Energy 97:107223. https://doi.org/10.1016/J.NANOEN.2022.107223 CR - Sharma S, Kiran R, Azad P, Vaish R (2022) A review of piezoelectric energy harvesting tiles: Available designs and future perspective. Energy Convers Manag 254:115272. https://doi.org/10.1016/J.ENCONMAN.2022.115272 CR - Khazaee M, Huber JE, Rosendahl L, Rezania A (2023) Four-point bending piezoelectric energy harvester with uniform surface strain toward better energy conversion performance and material usage. J Sound Vib 548:117492. https://doi.org/10.1016/J.JSV.2022.117492 CR - Shehata N, Nair R, Boualayan R, Kandas I, Masrani A, Elnabawy E, Omran N, Gamal M, Hassanin AH (123AD) Stretchable nanofibers of polyvinylidenefluoride (PVDF)/ thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. https://doi.org/10.1038/s41598-022-11465-5 CR - Elnabawy E, Hassanain AH, Shehata N, Popelka A, Nair R, Yousef S, Kandas I (2019) Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization. https://doi.org/10.3390/polym11101634 CR - Adeli B, Gharehaghaji AA, Jeddi AAA (2021) A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iranian Polymer Journal (English Edition) 30:535–545. https://doi.org/10.1007/S13726-021-00910-3/FIGURES/8 CR - Adeli B, Gharehaghaji AA, Jeddi AAA (2023) Energy Harvesting by Cyclic Tensile Loading and Buckling via an Electrospun Polyblend Elastic Layer of PVDF/PU. Fibers and Polymers 24:3839–3850. https://doi.org/10.1007/S12221-023-00364-9/FIGURES/11 CR - Mer Faruk Ö, Nsal Ü, Ç Elik Bedeloğ Lu AE (2023) Three-Dimensional Piezoelectric−Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting. Cite This: ACS Appl Nano Mater 6:14656–14668. https://doi.org/10.1021/acsanm.3c01973 CR - Ünsal ÖF, Bedeloğlu AÇ (2023) Nanofiber mat-based highly compact piezoelectric-triboelectric hybrid nanogenerators. Express Polym Lett 17:564–579. https://doi.org/10.3144/EXPRESSPOLYMLETT.2023.42 CR - Abir SSH, Sadaf MUK, Saha SK, Touhami A, Lozano K, Uddin MJ (2021) Nanofiber-Based Substrate for a Triboelectric Nanogenerator: High-Performance Flexible Energy Fiber Mats. ACS Appl Mater Interfaces 13:60401–60412. https://doi.org/10.1021/ACSAMI.1C17964/SUPPL_FILE/AM1C17964_SI_001.PDF CR - Wei C, Zhou H, Zheng B, Zheng H, Shu Q, Du H, Ma A, Liu H (2023) Fully flexible and mechanically robust tactile sensors containing core–shell structured fibrous piezoelectric mat as sensitive layer. Chemical Engineering Journal 476:146654. https://doi.org/10.1016/J.CEJ.2023.146654 CR - Zhang M, Liu C, Li B, Shen Y, Wang H, Ji K, Mao X, Wei L, Sun R, Zhou F (2023) Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv 5:1043–1059. https://doi.org/10.1039/D2NA00773H CR - Le B, Omran N, Hassanin AH, Kandas I, Gamal M, Shehata N, Shyha I (2023) Flexible piezoelectric PVDF/TPU nanofibrous membranes produced by solution blow spinning. Journal of Materials Research and Technology 24:5032–5041. https://doi.org/10.1016/J.JMRT.2023.04.051 CR - Kumar M, kumari P, sahatiya P (2022) P(VDF-TrFE)/ZnO nanofiber composite based piezoelectric nanogenerator as self-powered sensor: fabrication and characterization. Journal of Polymer Research 29:. https://doi.org/10.1007/S10965-022-02890-1 CR - Xu J, Liu Y, Cao Q, Jing B, Wang X, Tan L (2019) A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries. Journal of Chemical Sciences 131. https://doi.org/10.1007/S12039-019-1627-4 CR - Jishnu NS, Vineeth SK, Das A, Balakrishnan NTM, Thomas AP, Jabeen Fatima MJ, Ahn JH, Prasanth R (2021) Electrospun PVdF and PVdF-co-HFP-Based Blend Polymer Electrolytes for Lithium Ion Batteries. Materials Horizons: From Nature to Nanomaterials 201–234. https://doi.org/10.1007/978-981-15-8844-0_8/COVER CR - Liu Y, Peng X, Cao Q, Jing B, Wang X, Deng Y (2017) Gel Polymer Electrolyte Based on Poly(vinylidene fluoride)/Thermoplastic Polyurethane/Polyacrylonitrile by the Electrospinning Technique. Journal of Physical Chemistry C 121:19140–19146. https://doi.org/10.1021/ACS.JPCC.7B03411/ASSET/IMAGES/MEDIUM/JP-2017-034113_0012.GIF CR - Tang X, Cao Q, Wang X, Peng X, Zeng J (2015) Study of the effect of a novel high-performance gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride)/polystyrene and formed using an electrospinning technique. https://doi.org/10.1039/c5ra08493h CR - Cui Z, Wu J, Chen J, Wang X, Si J, Wang Q (2021) Preparation of 3-D porous PVDF/TPU composite foam with superoleophilic/hydrophobicity for the efficient separation of oils and organics from water. J Mater Sci 56:12506–12523. https://doi.org/10.1007/S10853-021-05995-Y/FIGURES/11 CR - Wei C, Zhou H, Zheng B, Zheng H, Shu Q, Du H, Ma A, Liu H (2023) Fully flexible and mechanically robust tactile sensors containing core-shell structured fibrous piezoelectric mat as sensitive layer. Chemical Engineering Journal 476:146654. https://doi.org/10.1016/j.cej.2023.146654 CR - Ünsal ÖF, Altın Y, Çelik Bedeloğlu A (2020) Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. J Appl Polym Sci 137:. https://doi.org/10.1002/APP.48517 CR - Shehata N, Nair R, Boualayan R, Kandas I, Masrani A, Elnabawy E, Omran N, Gamal M, Hassanin AH (2022) Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Scientific Reports 2022 12:1 12:1–11. https://doi.org/10.1038/s41598-022-11465-5 CR - Yang J, Zhang Y, Li Y, Wang Z, Wang W, An Q, Tong W (2021) Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Mater Today Commun 26:101629. https://doi.org/10.1016/J.MTCOMM.2020.101629 UR - https://doi.org/10.61112/jiens.1368591 L1 - http://dergipark.org.tr/tr/download/article-file/3443251 ER -