TY - JOUR T1 - INVESTIGATION OF THE EFFECTS OF PREGABALIN ON WOUND HEALING IN L929 FIBROBLAST CELLS AU - Halıcı, Hamza AU - Bekmez, Hüseyin PY - 2024 DA - February DO - 10.5281/zenodo.10712118 JF - Current Research in Health Sciences JO - Curr Res Health Sci PB - Atatürk Üniversitesi WT - DergiPark SN - 3023-6991 SP - 8 EP - 14 VL - 1 IS - 1 LA - en AB - Aim: Wound healing is a multifaceted, complex process consisting of sequential and interrelated phases including hemostasis/inflammation phase, proliferation phase and remodeling phase. Pregabalin (PGB), a gabapentin derivative, is an anticonvulsant agent with anti-inflammatory and antioxidant properties. Therefore, in this study, we aimed to show the effect of pregabalin on cell viability in L929 fibroblast cells and its effects on fibroblast migration and wound closure during the wound healing process.Materials And Methods: In this study, the effect of different concentrations of pregabalin on cell viability and proliferation in L929 skin fibroblast cells was investigated using MTT assay. In addition, a scratch wound healing model was established in L929 skin fibroblast cells and the effects of pregabalin concentrations that increase cell proliferation on wound healing in MTT assay were shown. At the end of the experiment, TGF-β1 levels of all groups were measured by ELISA method.Results: In our studies, it was observed that 100, 50, 25, 10 µM concentrations of pregabalin increased cell proliferation. In the scratch wound healing model, pregabalin at concentrations of 100 and 50 µM showed a significant closure compared to control and other groups. TGF-β1 levels were decreased in groups with good healing scores (50, 25 µM).Conclusion: Pregabalin has been shown to enhance wound healing in in vitro experiments. This effect needs to be evaluated holistically within the organ system in vivo. There is also a need for experimental and clinical studies to evaluate the wound healing effects and mechanism of pregabalin. KW - Wound Healing KW - pregabalin KW - scratch wound assay KW - L929 cell line CR - Abou-Khalil, B. W. (2016). Antiepileptic Drugs. Continuum (Minneap Minn), 22(1 Epilepsy), 132-156. https://doi.org/10.1212/CON.0000000000000289 CR - Abu-Rish, E. Y., Mansour, A. T., Mansour, H. T., Dahabiyeh, L. A., Aleidi, S. M., & Bustanji, Y. (2020). Pregabalin inhibits in vivo and in vitro cytokine secretion and attenuates spleen inflammation in Lipopolysaccharide/Concanavalin A -induced murine models of inflammation. Sci Rep, 10(1), 4007. https://doi.org/10.1038/s41598-020-61006-1 CR - Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol, 5, 491. https://doi.org/10.3389/fimmu.2014.00491 CR - Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen, 16(5), 585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x CR - Berman, B., Maderal, A., & Raphael, B. (2017). Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Dermatol Surg, 43 Suppl 1, S3-S18. https://doi.org/10.1097/DSS.0000000000000819 CR - Borges, G. A., Elias, S. T., da Silva, S. M., Magalhaes, P. O., Macedo, S. B., Ribeiro, A. P., & Guerra, E. N. (2017). In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J Craniomaxillofac Surg, 45(3), 364-370. https://doi.org/10.1016/j.jcms.2017.01.005 CR - Cangul, S., Adiguzel, O., & Tekin, S. (2020). Comparison of Cytotoxicity of Four Different Adhesive Materials Before and After Polymerisation. Oral Health & Preventive Dentistry, 18(1), 43-51. https://doi.org/10.3290/j.ohpd.a43940 CR - Ceyhan M. , T. E. (2008). Yeni Bir Antikonvülsan Pregabalin. Turkish Journal of Neurology, 14(3), 161-171. CR - Cory, G. (2011). Scratch-Wound Assay. Cell Migration: Developmental Methods and Protocols, Second Edition, 769, 25-30. https://doi.org/10.1007/978-1-61779-207-6_2 CR - Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 122(1), 103-111. https://doi.org/10.1083/jcb.122.1.103 CR - El Ayadi, A., Jay, J. W., & Prasai, A. (2020). Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci, 21(3). https://doi.org/10.3390/ijms21031105 CR - Eutamene, H., Coelho, A. M., Theodorou, V., Toulouse, M., Chovet, M., Doherty, A., Fioramonti, J., & Bueno, L. (2000). Antinociceptive effect of pregabalin in septic shock-induced rectal hypersensitivity in rats. J Pharmacol Exp Ther, 295(1), 162-167. https://www.ncbi.nlm.nih.gov/pubmed/10991974 CR - Everts, P. A., Knape, J. T., Weibrich, G., Schonberger, J. P., Hoffmann, J., Overdevest, E. P., Box, H. A., & van Zundert, A. (2006). Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol, 38(2), 174-187. https://www.ncbi.nlm.nih.gov/pubmed/16921694 CR - Fehrenbacher, J. C., Taylor, C. P., & Vasko, M. R. (2003). Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain, 105(1-2), 133-141. https://doi.org/10.1016/s0304-3959(03)00173-8 CR - Gauglitz, G. G., Korting, H. C., Pavicic, T., Ruzicka, T., & Jeschke, M. G. (2011). Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med, 17(1-2), 113-125. https://doi.org/10.2119/molmed.2009.00153 CR - Hecker, A., Schellnegger, M., Hofmann, E., Luze, H., Nischwitz, S. P., Kamolz, L. P., & Kotzbeck, P. (2022). The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J, 19(1), 9-28. https://doi.org/10.1111/iwj.13601 CR - Hosokawa, R., Nonaka, K., Morifuji, M., Shum, L., & Ohishi, M. (2003). TGF-beta 3 decreases type I collagen and scarring after labioplasty. J Dent Res, 82(7), 558-564. https://doi.org/10.1177/154405910308200714 CR - Huang, C., Dong, L., Zhao, B., Lu, Y., Huang, S., Yuan, Z., Luo, G., Xu, Y., & Qian, W. (2022). Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med, 12(11), e1094. https://doi.org/10.1002/ctm2.1094 CR - Huang, X., Sun, J., Chen, G., Niu, C., Wang, Y., Zhao, C., Sun, J., Huang, H., Huang, S., Liang, Y., Shen, Y., Cong, W., Jin, L., & Zhu, Z. (2019). Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. Front Pharmacol, 10, 421. https://doi.org/10.3389/fphar.2019.00421 CR - Jagiello, K., Uchanska, O., Matyja, K., Jackowski, M., Wiatrak, B., Kubasiewicz-Ross, P., & Karuga-Kuzniewska, E. (2023). Supporting the Wound Healing Process-Curcumin, Resveratrol and Baicalin in In Vitro Wound Healing Studies. Pharmaceuticals (Basel), 16(1). https://doi.org/10.3390/ph16010082 CR - Kant, V., Gopal, A., Kumar, D., Pathak, N. N., Ram, M., Jangir, B. L., Tandan, S. K., & Kumar, D. (2015). Curcumin-induced angiogenesis hastens wound healing in diabetic rats. J Surg Res, 193(2), 978-988. https://doi.org/10.1016/j.jss.2014.10.019 CR - Kasuya, A., & Tokura, Y. (2014). Attempts to accelerate wound healing. J Dermatol Sci, 76(3), 169-172. https://doi.org/10.1016/j.jdermsci.2014.11.001 CR - Moore, R. A., Straube, S., Wiffen, P. J., Derry, S., & McQuay, H. J. (2009). Pregabalin for acute and chronic pain in adults. Cochrane Database Syst Rev(3), CD007076. https://doi.org/10.1002/14651858.CD007076.pub2 CR - Nogueira, B. C. F., Campos, A. K., Alves, R. S., Sarandy, M. M., Novaes, R. M. D., Esposito, D., & Goncalves, R. V. (2020). What Is the Impact of Depletion of Immunoregulatory Genes on Wound Healing? A Systematic Review of Preclinical Evidence. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/Artn 8862953 10.1155/2020/8862953 CR - Ozdemir, K. G., Yilmaz, H., & Yilmaz, S. (2009). In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J Biomed Mater Res B Appl Biomater, 90(1), 82-86. https://doi.org/10.1002/jbm.b.31256 CR - Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., Shao, M., Gay, D. L., Ramos, R., Hsi, T. C., Oh, J. W., Wang, X., Ramirez, A., Konopelski, S. E., Elzein, A., Wang, A., Supapannachart, R. J., Lee, H. L., Lim, C. H., . . . Cotsarelis, G. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748-752. https://doi.org/10.1126/science.aai8792 CR - Ronnov-Jessen, L., & Petersen, O. W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest, 68(6), 696-707. https://www.ncbi.nlm.nih.gov/pubmed/8515656 CR - Salat, K., Gdula-Argasinska, J., Malikowska, N., Podkowa, A., Lipkowska, A., & Librowski, T. (2016). Effect of pregabalin on contextual memory deficits and inflammatory state-related protein expression in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol, 389(6), 613-623. https://doi.org/10.1007/s00210-016-1230-x CR - Seo, G. Y., Lim, Y., Koh, D., Huh, J. S., Hyun, C., Kim, Y. M., & Cho, M. (2017). TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med, 49(3), e302. https://doi.org/10.1038/emm.2016.167 Sinha, M., Gautam, L., Shukla, P. K., Kaur, P., Sharma, S., & Singh, T. P. (2013). Current perspectives in NSAID-induced gastropathy. Mediators Inflamm, 2013, 258209. https://doi.org/10.1155/2013/258209 CR - Sirin, D. Y., & Karaarslan, N. (2018). Evaluation of the effects of pregabalin on chondrocyte proliferation and CHAD, HIF-1alpha, and COL2A1 gene expression. Arch Med Sci, 14(6), 1340-1347. https://doi.org/10.5114/aoms.2018.73134 CR - Su, W. H., Cheng, M. H., Lee, W. L., Tsou, T. S., Chang, W. H., Chen, C. S., & Wang, P. H. (2010). Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation? Mediators Inflamm, 2010, 413238. https://doi.org/10.1155/2010/413238 CR - Takeo, M., Lee, W., & Ito, M. (2015). Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 5(1). https://doi.org/ARTN a023267 10.1101/cshperspect.a023267 CR - Teplicki, E., Ma, Q., Castillo, D. E., Zarei, M., Hustad, A. P., Chen, J., & Li, J. (2018). The Effects of Aloe vera on Wound Healing in Cell Proliferation, Migration, and Viability. Wounds, 30(9), 263-268. https://www.ncbi.nlm.nih.gov/pubmed/30256753 CR - Tsai, H. W., Wang, P. H., & Tsui, K. H. (2018). Mesenchymal stem cell in wound healing and regeneration. J Chin Med Assoc, 81(3), 223-224. https://doi.org/10.1016/j.jcma.2017.06.011 CR - Wagener, N., Di Fazio, P., Boker, K. O., & Matziolis, G. (2022). Osteogenic Effect of Pregabalin in Human Primary Mesenchymal Stem Cells, Osteoblasts, and Osteosarcoma Cells. Life-Basel, 12(4). https://doi.org/ARTN 496 10.3390/life12040496 CR - Zhang, K., Lu, J., Mori, T., Smith-Powell, L., Synold, T. W., Chen, S., & Wen, W. (2011). Baicalin increases VEGF expression and angiogenesis by activating the ERRalpha/PGC-1alpha pathway. Cardiovasc Res, 89(2), 426-435. https://doi.org/10.1093/cvr/cvq296 CR - Zhang, X., Kang, X., Jin, L., Bai, J., Liu, W., & Wang, Z. (2018). Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int J Nanomedicine, 13, 3897-3906. https://doi.org/10.2147/IJN.S168998 UR - https://doi.org/10.5281/zenodo.10712118 L1 - https://dergipark.org.tr/tr/download/article-file/3449754 ER -