TY - JOUR T1 - Creation of Some Fuzzy Ultranorm Spaces and Examining of Their Properties AU - Şanlıbaba, İbrahim PY - 2024 DA - December Y2 - 2024 DO - 10.18185/erzifbed.1380033 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yıldırım Üniversitesi WT - DergiPark SN - 2149-4584 SP - 585 EP - 597 VL - 17 IS - 3 LA - en AB - Bu çalışmada öncelikle bulanık kümelerin tanımı yapılmış, bulanık kümelerin klasik kümelerden farklı yönlerinin altı çizilmiştir. Bulanık kümelerdeki işlemler gösterilmiştir. Bulanık kümeler ve bulanık dizilerden oluşan bulanık sayılar üzerinde durulmuştur. Bulanık norm ve bulanık ultranorm tanımları yapılmıştır. Bulanık sayıların α-kesim dizileri şekillerde gösterilmiş ve çeşitli bulanık sayı dizileri verilmiştir. Ultrametrik uzayın tanımı bulanık kümeler halinde yapılmış olup, bulanık sayı kümesinin ultrametrik uzay olduğu ve tamlıkları araştırılarak tam bir ultrametrik uzay olduğu kanıtlanmıştır. Son olarak bazı bulanık ultra dizi kümeleri tanımlanmıştır. Daha sonra bulanık ultra-yakınsak, bulanık ultra-sıfır ve bulanık ultra-sınırlı diziler kümesi belirtilmiş ve kapsam durumları incelenmiştir. Bulanık diziler ve bulanık ultra diziler arasındaki farklar vurgulanmıştır. Ayrıca oluşturulan bazı bulanık ultra dizilerin özellikleri gösterilmiştir. Bulanık ultra sınırlı dizi uzaylarının tam ve ultra izomorfik olduğu kanıtlanmıştır. KW - Fuzzy set KW - fuzzy ultrametric spaces KW - fuzzy ultranorm KW - fuzzy ultra-sequence KW - ultra-isomorphic CR - [1] Zimmerman, H. J., (1985) Fuzzy Set Theory and Its Applications, Springer Science Business Media. CR - [2] Zadeh, L., (1965) Fuzzy sets. Inf. Control. 8: 338-353. CR - [3] Kaleva, O., Seikkala, S., (1984) On fuzzy metric space, Fuzzy Sets and Systems. 12, 215-229. CR - [4] Seikkala, S., (1987) On the initial value problem.ric spaces. Fuzzy Sets and Systems, 10.1016/0165-0114(87)90030-3. CR - [5] Matloka, M., (1986) Sequence of fuzzy numbers, Busefal. 28, 28_37. CR - [6] Katsaras, A. K., (1984) Fuzzy topological vector space II. Fuzzy sets and systems, 12,143- 154 CR - [7] Felbin, C., (1992) Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48, 239-248. CR - [8] Cheng, S.C., Mordeson, J. N., (1994) Fuzzy linear operators and fuzzy normed linear spaces. Bull. Cal. Math. Soc. 86 429-436. CR - [9] Kramosil, O., and Michalek, J., (1975) Fuzzy metric and statistical metric spaces. Kybornetica. 11, 326–334. CR - [10] Bag, T., Samanta, S., (2005) Fuzzy bounded linear operators, Fuzzy sets and Systems, 151(3):513-547. CR - [11] Sadeqi, I., Kia, F., (2009) Fuzzy normed linear space and its topological structure, Chaos Solitions and Fractals. 40 (5): 2576-2589. CR - [12] Xia, ZQ., Guo, FF., (2004) Fuzzy metric spaces, JAMC 16, 371–381. CR - [13] Khan, V. A., Ahmad M., Alam M., (2022) A Study of Fuzzy Sequence Spaces, Edited by Constanstin Volosencu 10.5772/intechopen.94202. CR - [14] Manuel Clementino, M., Montoli, A., (2021) On the categorical behaviour of V-groups. Journal of Pure and Applied Algebra 10.1016/j.jpaa.2020.106550. CR - [15] Bede, B., (2013) Mathematics of Fuzzy Sets and Fuzzy Logic, Springer-Verlag Berlin Heidelberg (pp. 137-170). CR - [16] Bag, T., Samanta, S. K., (2003) Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, vol. 3, pp. 687-705. CR - [17] Szmidt, E., (2014) Studies in Fuzziness and Soft Computing. Distances and Similarities in Intuitonistic Fuzzy Sets, Springer, International Publishing Switzerland London. CR - [18] Diamond, P., Kloeden P., (1994) Metric Spaces of Fuzzy Sets, World Scientific Publishing, River Edge, NJ,USA . CR - [19] Dubois, D., Prade, H., (1980) Fuzzy Sets and Systems: Theory and Applications. Mathematics in Science and Engineering, vol. 144, Academic Press. New York . CR - [20] Dutta, P., Boruah, H., Ali, T., (2011) Fuzzy Arithmetic with and without using α-cut method, A Comparative Study International Journal of Latest Trends in Computing (E-ISSN: 2045-5364) 99 Volume 2, Issue 1, March. CR - [21] Choi, H.C., (1996) The completeness of convergent sequences space of fuzzy numbers, Kangweon- Kyungki Math. Jour., vol. 4, no. 2, pp. 117–124. CR - [22] Rano, G., Bag, T., (2012) Fuzzy Normed Linear Spaces. Internatıonal Journal of Mathematıcs and Scıentıfıc Computıng (ISSN: 2231-5330), Vol. 2, No. 2 CR - [23] Şengönül, M., Zararsız, Z., (2011) Some Additions to the Fuzzy Convergent and Fuzzy Bounded Sequence Spaces of Fuzzy Numbers. Abstract and Applied Analysis. 10.1155/2011/837584. CR - [24] Şengönül, M., (2014) On the Zweier Sequence Spaces of Fuzzy Numbers. International Journal of Mathematics and Mathematical Sciences. 10.1155/2014/439169. CR - [25] Li, C., (2013) On some results of metrics induced by a fuzzy ultrametric. Filomat, 27(6), 1133-1140. CR - [26] Savchenko, А., Zarichnyi, M., (2011) Probability measure monad on the category of fuzzy ultrametric spaces. CR - [27] Gregori, V., Miñana, J. J., Sapena, A., (2017) Completable fuzzy metric spaces. Topology and its Applications, 225, 103-111. CR - [28] Zahedi Khameneh, A., Kilicman, A., Md Ali, F., (2021) Revision of Pseudo-Ultrametric Spaces Based on m-Polar T-Equivalences and Its Application in Decision Making. Mathematics, 9(11), 1232. CR - [29] Şanlıbaba, İ. (2020) Bazı Ultranormlu Uzaylar ve İzomorfikliği. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 265-272. CR - [30] Sanlibaba, I. (2019) New Type Ultra-Banach Spaces. International Journal of Scientific and Technological Research www.iiste.org ISSN 2422-8702 (Online), DOI: 10.7176/JSTR/5-12-02 Vol.5, No.12. CR - [31] Abed Alhaleem, N., & Ahmad, A. G. (2020) Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals. Mathematics, 8(9), 1594. UR - https://doi.org/10.18185/erzifbed.1380033 L1 - https://dergipark.org.tr/tr/download/article-file/3491665 ER -