TY - JOUR T1 - Evaluating the Performance of Railway Transportation Companies Using Multi-Criteria Decision-Making Methods TT - Demiryolu Taşımacılığı Firmalarının Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi AU - Yüksel, Çağdaş AU - Uncu, Nuşin PY - 2024 DA - July Y2 - 2024 DO - 10.47072/demiryolu.1407420 JF - Demiryolu Mühendisliği JO - Demiryolu Mühendisliği PB - Demiryolu Mühendisleri Derneği WT - DergiPark SN - 2149-1607 SP - 11 EP - 24 IS - 20 LA - en AB - The purpose of performance evaluation is to generate measurable data on an organization's performance, with the goal of assisting managerial decision-making and enhancing overall performance. In this study, the key performance indicators (KPIs) for railway transportation companies are identified based on expert opinions and previous frameworks. The operational performance of various railway freight transport companies was evaluated using multi-criteria decision-making methods (MCDM). Among the MCDM approaches, the Evaluation Based on Distance from Average Solution (EDAS) method was applied as the main method. In addition to the EDAS method, alternative MCDM methods such as TOPSIS, PROMETHEE II, and COPRAS were used to highlight potential deviations when compared to the results obtained with the EDAS method. Based on the research findings, three out of the seven KPIs, namely safety, have the highest weight at 38%, followed by punctuality at 19%, and journey time at 12%. Subsequently, companies were ranked according to their performance based on all KPIs. Furthermore, a sensitivity analysis was conducted to demonstrate how changes in the relative weights of KPIs can affect the results. KW - Key performance indicators KW - Multi-criteria decision making KW - Performance evaluation KW - Railway freight transport N2 - Performans değerlendirmenin amacı, bir organizasyonun performansıyla ilgili ölçülebilir veriler üretmek, yönetimsel karar alma sürecine destek olmak ve genel performansı artırmaktır. Bu çalışmada, demiryolu taşımacılığı şirketleri için anahtar performans göstergeleri (APG'ler), uzman görüşleri ve önceki çerçevelere dayalı olarak belirlenmektedir. Çeşitli demiryolu yük taşıma şirketlerinin işletme performansı, çoklu kriterli karar verme yöntemleri (ÇKKV) kullanılarak değerlendirilmektedir. ÇKKV yaklaşımlarından biri olan Ortalama Çözüm Uzaklığına Dayalı Değerlendirme (EDAS) yöntemi, ana yöntem olarak uygulanmıştır. EDAS yöntemiyle elde edilen sonuçlarla karşılaştırıldığında potansiyel sapmaları göstermek için TOPSIS, PROMETHEE II ve COPRAS gibi alternatif ÇKKV yöntemleri de kullanılmıştır. Araştırma bulgularına göre, yedi APG'den üçü, yani emniyet %38 ile en yüksek ağırlığa sahipken, bunu %19 ile dakiklik ve %12 ile seyir süresi takip etmektedir. Daha sonra şirketler tüm KPI'lar baz alınarak performanslarına göre sıralanmıştır. Ayrıca, APG'lerin göreceli ağırlıklarındaki değişikliklerin sonuçları nasıl etkileyebileceğini göstermek için duyarlılık analizi yapılmıştır. CR - [1] M. Frost, S. G. Ison, and R. Watson, “UK rail transport: a review of demand and supply,” Proceedings of the ICE: Transport, vol. 165, no. 3, pp. 225-234, 2012 CR - [2] TCDD, “Turkish State Railways sectoral report,” Turkey, 2020 CR - [3] IEA, “The future of ail: Opportunities for energy and the environment”, Paris, 2019 CR - [4] M. Lu, “Evaluation of railway performance through quality of service,” Ph.D. dissertation, University of Birmingham, England, 2016 CR - [5] UIC leaflet 406: capacity, UIC International Union of Railways, France, 2004 CR - [6] R. J. Anderson, R. Hirsch, M. Trompet, and W. Adeney, “Developing benchmarking methodologies for railway infrastructure management companies. Railway Technology Strategy Centre, Centre for Transport Studies, London, United Kingdom, 2003 CR - [7] IMPROVERAIL, “Improved tools for railway capacity and access management: D2 benchmarking methodologies a uropa zationion of concepts in the railway sector,” Competitive and Sustainable Growth Programme, European Commission, Belgium, 2003 CR - [8] European Commission, “Infrastructure managers (PRIME)”, 2023. [Online]. Available: https://transport.ec.europa.eu/transport-modes/rail/market/infrastructure-managers-prime_en [Accessed August 12, 2023] CR - [9] Key performance indicators for performance benchmarking, PRIME Catalogue, 2019 CR - [10] A. Cebeci, H. Tüydeş-Yaman, and D. M. Z. Islam, “Spatial distribution of the rail freight demand in Turkey prior to railway reform,” Research in Transportation Business and Management, vol. 44, 2022 CR - [11] UAB-Ministry of Transport and Infrastructure, “Demiryolu tren işletmecisi yetki belgesi sahibi firmalar,” 2020. [Online]. Available: https://uhdgm.uab.gov.tr/uploads/pages/demiryolu-tasimaciligi-yetki-belgesi-almis-olan fi/demiryolu-tren-isletmecisi-yetki-belgesi-sahibi-firmalar.pdf CR - [12] Y. He, F. Lei, G. Wei, R. Wang, J. Wu, and C. Wei, “EDAS method for multiple attribute group decision making with probabilistic uncertain linguistic information and its application to green supplier selection,” International Journal of Computational Intelligence Systems, vol. 12, no. 2, pp. 1361-1370, 2019 CR - [13] M. Keshavarz Ghorabaee, E. K. Zavadskas, L. Olfat, and Z. Turskis, “Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS),” Informatica, vol. 26, no. 3, pp. 435-451, 2015 CR - [14] G. F. Frederico, and V. Cavenaghi, “Measuring performance in rail freight transportation companies,” International Business Research, vol. 10, no. 11, pp. 117-128, 2017 CR - [15] L. Zhang, Q. Cheng, and Q. Siyuan, “Evaluation of railway transportation performance based on CRITIC-Relative Entropy Method in China,” Journal of Advanced Transportation, vol. 2023, 2023 CR - [16] R. Ranjan, P. Chatterjee, and S. Chakraborty, “Performance evaluation of Indian Railway zones using DEMATEL and VIKOR methods,” Benchmarking: An International Journal, vol. 23, no. 1, pp. 78-95, 2016 CR - [17] E. Jose, P. Agarwal, J. Zhuang, and J. Swaminathan, “A multi-criteria decision making approach to evaluating the performance of Indian railway zones,” Annals of Operations Research, vol. 325, no. 2, pp. 1133-1168, 2023 CR - [18] N. Petrović, J. Mihajlović, V. Jovanović, D. Ćirić, and T. Živojinović, “Evaluating annual operation performance of Serbian railway system by using multiple criteria decision-making technique” Acta Polytechnica Hungarica, vol. 20, no. 1, 2023 CR - [19] A. Fraszczyk, T. Lamb, and M. Marinov, “Are railways really that bad? An evaluation of rail systems performance in Europe with a focus on passenger rail,” Transportation Research Part A: Policy and Practice, vol. 94, pp. 573–591, 2016 CR - [20] S. Stoilova, N. Munier, M. Kendra, and T. Skrúcaný, “Multi-criteria evaluation of railway network performance in countries of the TEN-T orient-east med corridor,” Sustainability, vol. 12, no. 4, pp. 1482, 2020 CR - [21] S. D. Stoilova, “A multi-criteria assessment approach for the evaluation of railway transport in the Balkan region,” Promet-Traffic&Transportation, vol. 31, no. 6, pp. 655-668, 2019 CR - [22] K. Kara, and G. C. Yalçın, “Assessing railway transportation performance of European countries with CRITIC and ROV techniques” Demiryolu Mühendisliği, no. 17, pp. 93-106, 2023 CR - [23] M. B. Bouraima, A. Saha, A. Stević, Z. Antucheviciene, J. Qiu, and P. Marton, “Assessment actions for improving railway sector performance using intuitionistic fuzzy-rough multi-criteria decision-making model,” Applied Soft Computing, vol. 148, 2023 CR - [24] M. G. Sharma, R. M. Debnath, R. Oloruntoba, and S. M. Sharma, “Benchmarking of rail transport service performance through DEA for Indian railways,” The International Journal of Logistics Management, vol. 27, no. 3, pp. 629-649, 2016 CR - [25] N. O. Olsson, and H. Haugland, “Influencing factors on train punctuality - results from some Norwegian studies,” Transport policy, vol. 11, no. 4, pp. 387-397, 2004 CR - [26] B. D. Dağıdır, and B. Özkan, “A comprehensive evaluation of a company performance using sustainability balanced scorecard based on picture fuzzy AHP,” Journal of Cleaner Production, vol. 435, no. 140519, 2024 CR - [27] N. H. Zardari, K. Ahmed, S. M. Shirazi, and Z. B. Yusop, “Weighting methods and their effects on multi-criteria decision-making model outcomes in water resources management,” Springer International Publishing, Switzerland, pp. 1-5, 2014 CR - [28] A. Özdağoğlu, and G. Özdağoğlu, “Comparison of AHP and fuzzy AHP for the multi-criteria decision making processes with linguistic evaluations,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 11, pp. 65-85, 2007 CR - [29] J. J. Buckley, “Fuzzy hierarchical analysis,” Fuzzy sets and systems, vol. 17, no. 3, pp. 233-247, 1985 CR - [30] M. B. Ayhan, “A fuzzy AHP approach for supplier selection problem: A case study in a gear motor company,” International Journal of Managing Value and Supply Chains, vol. 4, pp. 11-23, 2013 CR - [31] M. Mathew, and S. Sahu, “Comparison of new multi-criteria decision making methods for material handling equipment selection,” Management Science Letters, vol. 8, no. 3, pp. 139–150, 2018 CR - [32] N. Yalçın, and N. Uncu, “Applying EDAS as an applicable MCDM method for industrial robot selection,” Sigma Journal of Engineering and Natural Sciences, vol. 37, no. 3, pp. 779-796, 2019 CR - [33] A. Zaki Mohamed Noor et al., “Fusion of fuzzy AHP in selecting material for drinking water bottle based on customer needs,” Journal of Engineering and Applied Sciences, vol. 12, no. 14, pp. 4243-4249, 2017 CR - [34] S. Razavi et al., “Future of sensitivity analysis: An essential discipline for systems modeling and policy support,” Environmental Modelling and Software, vol. 137, 2021 CR - [35] B. Iooss, and A. Saltelli, “Introduction to sensitivity analysis,” in Handbook of Uncertainty Quantification, Springer, Cham, pp. 1-31, 2017 UR - https://doi.org/10.47072/demiryolu.1407420 L1 - https://dergipark.org.tr/tr/download/article-file/3610413 ER -