TY - JOUR T1 - Transfer Öğrenme Yaklaşımı Kullanılarak İzolatör Kusurlarının Tespiti AU - Özküçük, Muhammed Buğracan AU - Alçin, Ömer Faruk AU - Gençoğlu, Muhsin Tunay PY - 2024 DA - June Y2 - 2024 DO - 10.24012/dumf.1415322 JF - Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi JO - DUJE PB - Dicle Üniversitesi WT - DergiPark SN - 1309-8640 SP - 323 EP - 330 VL - 15 IS - 2 LA - tr AB - Elektrik enerjisinin iletimi ve dağıtımı, modern toplumların işleyişinde hayati bir rol oynamaktadır. Bu enerjinin güvenli ve kesintisiz bir şekilde taşınması, elektrik sistemlerinin sağlıklı bir şekilde çalışmasıyla mümkün olmaktadır. Ancak, elektrik iletim hatlarındaki kusurlar, sistemde arızalara ve enerji kesintilerine neden olabilmektedir. İzolatör kusurları, elektrik hatlarındaki en yaygın arızalar arasında yer almaktadır. Bu kusurlar, genellikle izolatör yüzeyindeki çatlaklar, kırıklar, erozyon veya kimyasal bozulmalar şeklinde ortaya çıkmaktadır. Son yıllarda, yapay zeka ve makine öğrenmesi teknikleri, izolatör kusurlarının belirlenmesi için alternatif bir çözüm sunmuştur. Bu alanda transfer öğrenme, özellikle dikkat çeken bir yaklaşım olarak ön plana çıkmaktadır. Bu yaklaşım, izolatör kusurlarının tespitinde kullanılan verilerden öğrenilen bilgilerin, yeni bir izolatördeki kusurların belirlenmesinde kullanılmasına olanak sağlamaktadır. Bu çalışmada izolatör görüntülerinden transfer öğrenme yaklaşımı kullanılarak izolatör türü ve sağlamlık durumu (normal/kusurlu) tespiti yapılmıştır. Bu problemlerin verimli çözümü için Çoklu Öğrenme yaklaşımı dikkate alınmıştır. Bu durumlar literatürde yaygın olarak kullanılan çok sınıflı görüntü veri setlerinde iyi başarımlar gösteren AlexNet, ResNet50 ve GoogLeNet gibi mimarilere giriş olarak uygulanmıştır. İzolatörün sağlamlık durumunun tespitinde en iyi doğruluk oranına % 97.674 ile AlexNet ve ResNe50 mimarilerinde ulaşılmıştır. İzolatör türünün belirlenmesinde en iyi doğruluk oranına % 90.698 ile ResNe50 mimarisinde ulaşılmıştır. KW - İzolatör kusuru KW - Transfer Öğrenme KW - Çoklu Öğrenme KW - ESA CR - [1] L. Li, W. Jin, and Y. Huang, “Few-shot contrastive learning for image classification and its application to insulator identification,” Applied Intelligence, vol. 52, no. 6, pp. 6148–6163, Sep. 2021, doi: 10.1007/s10489-021-02769-6. CR - [2] X. Miao, X. Liu, J. Chen, S. Zhuang, J. Fan, and H. Jiang, “Insulator Detection in Aerial Images for Transmission Line Inspection Using Single Shot Multibox Detector,” IEEE Access, vol. 7, pp. 9945–9956, 2019, doi: 10.1109/access.2019.2891123. CR - [3] R. M. Prates, R. Cruz, A. P. Marotta, R. P. Ramos, E. F. Simas Filho, and J. S. Cardoso, “Insulator visual non-conformity detection in overhead power distribution lines using deep learning,” Computers & Electrical Engineering, vol. 78, pp. 343–355, Sep. 2019, doi: 10.1016/j.compeleceng.2019.08.001. CR - [4] R. Miller, F. Abbasi, and J. Mohammadpour, “Power line robotic device for overhead line inspection and maintenance,” Industrial Robot: An International Journal, vol. 44, no. 1, pp. 75–84, Jan. 2017, doi: 10.1108/ir-06-2016-0165. CR - [5] M. W. Adou, H. Xu and G. Chen, "Insulator Faults Detection Based on Deep Learning," 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2019, pp. 173-177, doi: 10.1109/ICASID.2019.8925094. CR - [6] J. Park et al., "Vehicular Multi-Camera Sensor System for Automated Visual Inspection of Electric Power Distribution Equipment," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 281-288, doi: 10.1109/IROS40897.2019.8968085. CR - [7] X. Li, H. Su, and G. Liu, “Insulator Defect Recognition Based on Global Detection and Local Segmentation,” IEEE Access, vol. 8, pp. 59934–59946, 2020, doi: 10.1109/access.2020.2982288. CR - [8] D. Mussina, A. Irmanova, P. K. Jamwal, and M. Bagheri, “Multi-Modal Data Fusion Using Deep Neural Network for Condition Monitoring of High Voltage Insulator,” IEEE Access, vol. 8, pp. 184486–184496, 2020, doi: 10.1109/access.2020.3027825. CR - [9] Y. Gao, L. Gao and X. Li, "A New Semi-Supervised Deep Learning Approach for Intelligent Defects Recognition," 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), Nanjing, China, 2020, pp. 1-4, doi: 10.1109/ICNSC48988.2020.9238100. CR - [10] J. Liu, C. Liu, Y. Wu, H. Xu, and Z. Sun, “An Improved Method Based on Deep Learning for Insulator Fault Detection in Diverse Aerial Images,” Energies, vol. 14, no. 14, p. 4365, Jul. 2021, doi: 10.3390/en14144365. CR - [11] Y. Hao, W. Liang, L. Yang, J. He, and J. Wu, “Methods of image recognition of overhead power line insulators and ice types based on deep weakly‐supervised and transfer learning,” IET Generation, Transmission & Distribution, vol. 16, no. 11, pp. 2140–2153, Feb. 2022, doi: 10.1049/gtd2.12428. CR - [12] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186. CR - [13] F. Demir, D. A. Abdullah, and A. Sengur, “A New Deep CNN Model for Environmental Sound Classification,” IEEE Access, vol. 8, pp. 66529–66537, 2020, doi: 10.1109/access.2020.2984903. CR - [14] S. S. Liew, M. Khalil-Hani, S. Ahmad Radzi, and R. Bakhteri, “Gender classification: a convolutional neural network approach,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, pp. 1248–1264, 2016, doi: 10.3906/elk-1311-58. CR - [15] Li et al., “Facial Expression Recognition with Faster R-CNN,” Procedia Computer Science, vol. 107, pp. 135–140, 2017, doi: 10.1016/j.procs.2017.03.069. CR - [16] X. Fan, X. Feng, Y. Dong, and H. Hou, “COVID-19 CT image recognition algorithm based on transformer and CNN,” Displays, vol. 72, p. 102150, Apr. 2022, doi: 10.1016/j.displa.2022.102150. CR - [17] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3, no. 1, May 2016, doi: 10.1186/s40537-016-0043-6. CR - [18] F. Zhuang et al., "A Comprehensive Survey on Transfer Learning," in Proceedings of the IEEE, vol. 109, no. 1, pp.43-76, Jan.2021, doi: 10.1109/JPROC.2020.3004555. CR - [19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386. CR - [20] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90. CR - [21] M. Özküçük, Ö. F. Alçin, and M. Gençoğlu, “EMG Sinyalleri Kullanılarak GoogLeNet ve Çok Seviyeli DPD ile El Tutma Hareketlerinin Sınıflandırılması,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 34, no. 1, pp. 33–43, Mar. 2022, doi: 10.35234/fumbd.932585. CR - [22] S. Siuly et al., "A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 9, pp. 1966-1976, Sept. 2020, doi: 10.1109/TNSRE.2020.3013429. CR - [23] Stéfano Stefenon, December 10, 2021, "Inspection of Electrical Power Distribution Grid (South of Brazil)", IEEE Dataport, doi: https://dx.doi.org/10.21227/pvzk-c971. UR - https://doi.org/10.24012/dumf.1415322 L1 - http://dergipark.org.tr/tr/download/article-file/3641983 ER -