TY - JOUR T1 - Energy Levels and Absorption Coefficients for Diverse Bounded Potentials: A Comprehensive Analysis TT - Çeşitli Bağlı Potansiyeller için Enerji Seviyeleri ve Soğurma Katsayıları: Kapsamlı Bir Analiz AU - Çakır, Raşit AU - Zərbaliyev, Tərlan AU - Yıldırım, Hasan PY - 2025 DA - June Y2 - 2025 DO - 10.53501/rteufemud.1446402 JF - Recep Tayyip Erdogan University Journal of Science and Engineering JO - RTEÜ-FEMÜD PB - Recep Tayyip Erdoğan Üniversitesi WT - DergiPark SN - 2687-2315 SP - 14 EP - 31 VL - 6 IS - 1 LA - en AB - This article presents a comprehensive numerical investigation into the energy levels and absorption coefficients within quantum well structures, with a particular focus on the GaAs/AlGaAs system. Various bounded potentials, including the Rosen-Morse potential, Wood-Saxon potential, Pöschl-Teller potential, Razavy potential, inversely quadratic Hellmann potential, Kratzer-Fues potential, and Morse potential, are explored. Employing the Schrödinger equation, with considerations for effective mass and envelope function approximations, a discrete formulation is attained through finite differences. Throughout the analysis, the effective mass ratio is upheld as a constant value characteristic of GaAs. The study reveals that transition energies and absorption coefficients exhibit subtle variations in response to alterations in well parameters, spanning from the lower bounds of the near-infrared spectrum to the midpoints of the far-infrared region. By comprehensively studying these phenomena across a spectrum of potentials, this research contributes valuable insights into the behavior and characteristics of quantum well structures, particularly within the context of the GaAs/AlGaAs system. KW - Quantum well KW - intersubband absorption KW - GaAs KW - finite difference method N2 - Bu makale, GaAs/AlGaAs sistemi üzerinde odaklanarak kuantum kuyu yapıları içindeki enerji seviyeleri ve soğurma katsayıları üzerine kapsamlı bir sayısal incelemeyi sunmaktadır. Rosen-Morse potansiyeli, Wood-Saxon potansiyeli, Pöschl-Teller potansiyeli, Razavy potansiyeli, ters kuadratik Hellmann potansiyeli, Kratzer-Fues potansiyeli ve Morse potansiyeli gibi çeşitli bağlı potansiyeller keşfedilmektedir. Etkin kütle ve zarf fonksiyonu yaklaşımlarını dikkate alarak, Schrödinger denklemi, sonlu farklar kullanılarak bir ayrık forma dönüştürülür. Analiz boyunca, etkin kütle oranı GaAs'ın karakteristik bir sabit değeri olarak tutulmuştur. Çalışma, kuyu parametrelerindeki değişikliklere karşı geçiş enerjileri ve emilim katsayılarının ince farklılıklar sergilediğini ortaya koymaktadır. Bu, yakın kızılötesi spektrumun alt sınırlarından uzak kızılötesi bölgenin ortalarına kadar uzanır. Farklı potansiyeller yelpazesinde bu fiziksel olayları kapsamlı bir şekilde inceleyerek, özellikle GaAs/AlGaAs sistemi bağlamında, bu araştırma kuantum kuyu yapılarının davranışı ve özellikleri hakkında değerli görüşler sunmaktadır. CR - Ahn, D. and Chuang, S.-l. (1987). Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 23(12), 2196-2204. https://doi.org/10.1109/JQE.1987.1073280 CR - Atić, A., Vuković, N. and Radovanović, J. (2022.) Calculation of intersubband absorption in ZnO/ZnMgO asymmetric double quantum wells. Optical and Quantum Electronics, 54, 810. https://doi.org/10.1007/s11082-022-04170-0 CR - Atić, A., Wang X., Vuković, N., Stanojević N., Demić A., Indjin D. and Radovanović J. (2024). Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation. Materials, 17(4), 927. https://doi.org/10.3390/ma17040927 CR - Aytekin, O., Turgut, S. and Tomak, M. (2012). Nonlinear optical properties of a Pöschl–Teller quantum well under electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 44, 1612–1616. https://doi.org/10.1016/j.physe.2012.04.005 CR - Bayrak, O., Boztosun, I. and Ciftci, H. (2006). Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107, 540-544. https://doi.org/10.1002/qua.21141 CR - Cominotti, R. and Leymann, H. A. M. and Nespolo, J. and Manceau, J.-M. and Jeannin, M. and Colombelli, R. and Carusotto, I. (2023). Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells. Physical Review B, 107(11), 115431. https://doi.org/10.1103/PhysRevB.107.115431 CR - Costa Filho, R.N., Alencar, G., Skagerstam, B.S. and Andrade jr, J.S. (2013). Morse potential derived from first principles. Europhysics Letters, 101(1), 10009. https://doi.org/10.1209/0295-5075/101/10009 CR - Dehyar, A., Rezaei, G. and Zamani, A. (2016). Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 84, 175-181. https://doi.org/10.1016/j.physe.2016.05.038 CR - Duan, Y., Li, X., Chang, C., Zhao, Z. and Zhang, L. (2022). Hydrostatic pressure, temperature and Al-concentration effects on optical rectification of spherical quantum dots under inversely quadratic Hellmann potential. Optik, 254, 168596. https://doi.org/10.1016/j.ijleo.2022.168596 CR - Duru, I.H. (1983). Morse-potential Green's function with path integrals. Physical Review D, 28, 2689. https://doi.org/10.1103/PhysRevD.28.2689. CR - Falaye, B.J. (2012). Energy spectrum for trigonometric Pöschl-Teller potential. Canadian Journal of Physics, 90(12), 1259-1265. https://doi.org/10.1139/p2012-103 CR - Finkel, F., González-López, A. and Rodrígue, M.A. (1999). On the families of orthogonal polynomials associated to the Razavy potential. Journal of Physics A: Mathematical and General, 32(29), 6821-6835. https://doi.org/10.1088/0305-4470/32/39/308 CR - Flügge, S. (1999). Practical Quantum Mechanics. Springer Berlin, ISBN: 978-3-540-65035-5, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-61995-3 CR - Fues, E. (1926). Das eigenschwingungsspektrum zweiatomiger moleküle in der undulationsmechanik. Annalen der Physik, 385, 367-396. https://doi.org/10.1002/andp.19263851204 CR - Ghanbari, A. (2023). Studying third harmonic generation in spherical quantum dot under inversely quadratic Hellmann potential. Optical and Quantum Electronics, 55, 222. https://doi.org/10.1007/s11082-022-04513-x CR - Haghighatzadeh, A. and Attarzadeh, A. (2023). A comprehensive investigation on valence-band electronic structure and linear and nonlinear optical properties of a laser-driven GaAsSb-based Rosen-Morse quantum well. The European Physical Journal B, 96, 125. https://doi.org/10.1140/epjb/s10051-023-00592-1 CR - Hamzavi, M. and Rajabi, A. (2011). Exact s-wave solution of the trigonometric pöschl-teller potential. International Journal of Quantum Chemistry, 112, 1592–1597. https://doi.org/10.1002/qua.23166 CR - Harrison, P. (2005). Numerical Solutions. In: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Eds. Harrison, P. and Valavanis, A), John Wiley and Sons Ltd. ISBN:9780470010792, Chichester, England. http://doi.org/10.1002/0470010827 CR - Hellmann, H. (1936). Ein kombiniertes Näherungsverfahren zur Energieberechnung im Vielelektronenproblem. II. Acta Physicochim. USSR, 4, 225-244. CR - Kasapoglu, E., Sarı, H., Sökmen, I., Vinasco, J.A., Laroze, D. and Duque, C.A. (2021). Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 126, 114461. https://doi.org/10.1016/j.physe.2020.114461 CR - Khordad, R. (2013). Confinement of an exciton in a quantum dot: Effect of modified Kratzer potential. Indian Journal of Physics, 87, 623–628. https://doi.org/10.1007/s12648-013-0281-9 CR - Khordad, R. and Mirhosseini, B. (2014). Linear and nonlinear optical properties in spherical quantum dots: Rosen–Morse potential. Condenced-Matter Spectroscopy, 117(3), 434-440. https://doi.org/10.1134/S0030400X14090100 CR - Khurgin, J.B. (2023). Basic Physics of Intersubband Radiative and Nonradiative Processes. In: Mid-Infrared and Terahertz Quantum Cascade Lasers (Eds. Botez, D. and Belkin, A.M.), Cambridge University Press. ISBN: 9781108552066. https://doi.org/10.1017/9781108552066 CR - Kratzer, A. (1920). Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik, 3, 289–307. https://doi.org/10.1007/BF01327754 CR - Máthé, L., Onyenegecha, C.P., Farcaş, A.-A., Pioraş-Ţimbolmaş, L.-M., Solaimani, M. and Hassanabadi, H. (2021). Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Physics Letters A, 397, 127262. https://doi.org/10.1016/j.physleta.2021.127262 CR - Morse, P.M. (1929). Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Physical Review, 34, 57-64. https://doi.org/10.1103/PhysRev.34.57 CR - Nieto, M.M. and Simmons Jr., L.M. (1979). Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Physical Review A, 19(2), 438-444. https://doi.org/10.1103/PhysRevA.19.438 CR - Njoku, I.J., Onyenegecha, C.P., Okereke, C.J., Nwaokafor, P. and Abara, C.C. (2023). Relativistic energies and information entropy of the inversely quadratic Hellmann potential. Physics Open, 15, 100152. https://doi.org/10.1016/j.physo.2023.100152 CR - Persichetti, L., Montanari, M., Ciano, C., Di Gaspare, L., Ortolani, M., Baldassarre, L., Zoellner, M., Mukherjee, S., Moutanabbir, O., Capellini, G., Virgilio, M., and De Seta, M. (2020). Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells. Crystals, 10(3), 179. https://doi.org/10.3390/cryst10030179 CR - Pöschl, G. and Teller, E. (1933). Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik, 83, 143–151. https://doi.org/10.1007/BF01331132 CR - Razavy, M. (1980). An exactly soluble Schrödinger equation with a bistable potential. American Journal of Physics, 48(4), 285-288. https://doi.org/10.1119/1.12141 CR - Restrepo, R.L., Morales, A.L., Akimov, V., Tulupenko, V., Kasapoglu, E., Unfan F. and Duque C.A. (2015). Intense laser field effects on a Woods–Saxon potential quantum well. Superlattices and Microstructures, 87, 143-148. https://doi.org/10.1016/j.spmi.2015.03.070 CR - Rosen, N. and Morse, P.M. (1932). On the Vibrations of Polyatomic Molecules. Physical Review, 42, 210-217. https://doi.org/10.1103/PhysRev.42.210 CR - Sakiroglu, S., Kasapoglu, E., Restrepo, R.L., Duque, C.A. and Sökmen, I. (2016). Intense laser field-induced nonlinear optical properties of Morse quantum well. Physica Status Solidi B, 254(4), 1600457. https://doi.org/10.1002/pssb.201600457 CR - Salman Durmuslar, A., Turkoglu, A., Mora-Ramos, M.E. and Ungan, F. (2022). The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen-Morse quantum well. Indian Journal of Physics, 96(12), 3485–3492. https://doi.org/10.1007/s12648-021-02251-6 CR - Sayrac, M., Peter, A.J. and Ungan, F. (2022). Interband transitions and exciton binding energy in a Razavy quantum well: effects of external fields and Razavy potential parameters. The European Physical Journal Plus, 137, 840. https://doi.org/10.1140/epjp/s13360-022-03038-2 CR - Sous, A.J. (2007). Eigenenergies for the Razavy potential V(x) = (ζ cosh 2x-M)2 using the asymptotic iteration method. Modern Physics Letters A, 22(22), 1677-1684. https://doi.org/10.1142/S0217732307021433 CR - Turkoglu, A., Dakhlaoui, H., Durmuslar, A.S., Mora-Ramos, M.E. and Ungan, F. (2021). Nonlinear optical properties of a quantum well with inversely quadratic Hellman potential. The European Physical Journal B, 94, 111. https://doi.org/10.1140/epjb/s10051-021-00129-4 CR - Ungan, F. and Bahar, M.K. (2019). Optical specifications of laser-induced Rosen-Morse quantum well. Optical Materials, 90, 231-237. https://doi.org/10.1016/j.optmat.2019.02.040 CR - Ungan, F. and Bahar, M.K. (2020). The laser field controlling on the nonlinear optical specifications of the electric field-triggered Rosen-Morse quantum well. Physics Letters A, 384(19), 126400. https://doi.org/10.1016/j.physleta.2020.126400 CR - Ungan, F., Bahar, M.K., Barseghyan, M.G., Pérez, L.M. and Laroze, D. (2021). Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik, 236, 166621. https://doi.org/10.1016/j.ijleo.2021.166621 CR - Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L. and Mora-Ramos, M.E. (2019). The nonlinear optical properties of GaAs-based quantum wells with Kratzer–Fues confining potential: Role of applied static fields and non-resonant laser radiation. Optik, 185, 881-887. https://doi.org/10.1016/j.ijleo.2019.03.129 CR - Ungan, F., Mora-Ramos, M.E., Yesilgul U., Sari, H. and Sökmen, I. (2019). Effect of applied external fields on the nonlinear optical properties of a Woods-Saxon potential quantum well. Physica E: Low-dimensional systems and nanostructures, 111, 167-171. https://doi.org/10.1016/j.physe.2019.03.015 CR - van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37 CR - Woods, R.D. and Saxon, D.S. (1954). Diffuse surface optical model for nucleon-nuclei scattering. Physical Review, 95, 577-578. https://doi.org/10.1103/PhysRev.95.577 CR - Xie, W. (2009). A study of two confined electrons using the Woods–Saxon potential. Journal of Physics: Condensed Matter, 21(11), 115802. https://doi.org/10.1088/0953-8984/21/11/115802 CR - Yıldırım, H. and Tomak, M. (2005). Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72, 115340. https://doi.org/10.1103/physrevb.72.115340 CR - Yildirim, H. and Tomak, M. (2006). Intensity-dependent refractive index of a Pöschl-Teller quantum well. Journal of Applied Physics, 99, 093103. https://doi.org/10.1063/1.2194124 UR - https://doi.org/10.53501/rteufemud.1446402 L1 - https://dergipark.org.tr/tr/download/article-file/3769212 ER -