@article{article_1451945, title={Geleneksel Makine Öğrenmesi Yöntemleri Ve Metasezgisel Yöntemlerle Öznitelik Seçim Yöntemlerinin Karşılaştırılması}, journal={Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi}, volume={15}, pages={397–409}, year={2024}, DOI={10.24012/dumf.1451945}, author={Açar, İsmail and Aydilek, İbrahim Berkan}, keywords={Öznitelik seçimi, metasezgisel algoritmalar, makine öğrenmesi, genetik algoritmalar, parçacık sürü optimizasyon algoritması}, abstract={Öznitelik seçim yöntemleri, makine öğrenmesi için çok önemli bir yere sahiptir. Veri kümesinin boyutu arttıkça makine öğrenmesi modelinin performansı düşmektedir. Öznitelik seçim yöntemi aynı zamanda bir optimizasyon süreci olarak düşünülebilmektedir. Gürültülü olan ya da model için alakasız olan öznitelikler elenince başarı artabilmektedir. Bu çalışma kapsamında UCI veri deposundan 3 farklı veri kümesi kullanılmış ve 5 farklı makine öğrenmesi algoritması kullanılarak 10 katlı çapraz doğrulama yöntemiyle algoritmaların başarımları ve çalışma süreleri ölçülmüştür. Öznitelik seçim yöntemi olarak geleneksel makine öğrenmesi ile öznitelik seçim yöntemleri ve meta sezgisel algoritmalar kullanılarak öznitelik seçim işlemleri gerçekleştirilmiştir. Kullanılan öznitelik seçim yöntemleri şu şekildedir; Korelasyon Analizi, Lasso, Hipotez testi ve metasezgisel algoritmalardan Genetik Algoritma ve Parçacık Sürü Optimizasyon Algoritması yöntemleri kullanılmıştır. Yapılan deneyler sonucunda öznitelik seçim yöntemlerinin uygulanması ile birlikte başarımın arttığı görülmektedir. Metasezgisel algoritmalarla yapılan öznitelik seçiminin başarım ve çalışma süresi bakımından daha uygun olduğu gözlemlenmiştir.}, number={2}, publisher={Dicle Üniversitesi}