TY - JOUR T1 - Investigation of Neutron Shielding Behaviour of Unreinforced and Calcite Reinforced Concrete Samples TT - Kalsit Katkılı ve Kalsit Katkılı Olmayan Beton Numunelerde Nötron Zırhlama Davranışının İncelenmesi AU - Tuna, Tuncay AU - Balnan, İpek AU - Samur, Melek Gülnur AU - Sezgin, Nursel PY - 2022 DA - March DO - 10.55205/joctensa.11202235 JF - Cihannüma Teknoloji Fen ve Mühendislik Bilimleri Akademi Dergisi JO - JOCTENSA PB - Cihannüma Dayanışma ve İşbirliği Derneği WT - DergiPark SN - 2822-2342 SP - 73 EP - 86 VL - 1 IS - 1 LA - en AB - Neutron particles are different, due to their nature of interacting directly with the atomic nucleus and making indirect ionization. In this study calcite containing and non-calcite containing concrete samples neutron shielding capabilities was compared with each other. CaCO3 (calcite) added concrete and pure concrete was experimentally compared against an isotropic Am-Be neutron source. Naturally, calcite containing concrete was in heavy form in comparison with pure concrete, means that the aim of these experiment is comparing neutron shielding properties of heavy and light concrete. In both samples, thickness of the samples was started with 2 cm and reach to 10 cm with 2 cm increases. The effect of thickness and the effect of material type on neutron shielding was investigated. According to the test results, pure concrete samples shows better shielding characteristics. KW - Neutron KW - concrete KW - shielding KW - radiation KW - calcite N2 - Nötron parçacıkları, atom çekirdeği ile doğrudan etkileşime girme ve dolaylı iyonizasyon yapma yapıları nedeniyle diğer radyasyon türlerinin oluşturduğu etkilerden farklı etkiler oluştururlar. Bu çalışmada kalsit içeren ve içermeyen beton numunelerin nötron zırhlama yetenekleri birbirleriyle karşılaştırılmıştır. CaCO3 (kalsit) katkılı beton ve saf beton deneysel olarak izotropik Am-Be nötron kaynağı karşısında karşılaştırılmıştır. Doğal olarak kalsit içeren betonun saf betona göre ağır formda olması, bu çalışmanın amacının ağır ve hafif betonun nötron radyasyonuna karşı koruyuculuk özelliklerini karşılaştırmak olduğu anlamına gelir. Her iki örnekte de örneklerin kalınlığı 2 cm ile başlamış ve 2 cm'lik artışlarla 10 cm'ye ulaşmıştır. Kalınlığın etkisi ve malzeme tipinin nötron zırhlama davranışı üzerine etkisi araştırılmıştır. Deney sonuçlarına göre, saf beton numunelerinin daha üstün özellik gösterdiği görülmüştür. CR - Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiation Physics and Chemistry, 145, 5-10. https://doi.org/10.1016/j.radphyschem.2017.12.006 CR - Adeli, R., Shirmardi, S. P., & Ahmadi, S. J. (2016). Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiation Physics and Chemistry, 127, 140-146. https://doi.org/10.1016/j.radphyschem.2016.06.026 CR - Araz, A., Kavaz, E., & Durak, R. (2021). Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: An experimental study. Radiation Physics and Chemistry, 182, 109382. https://doi.org/10.1016/j.radphyschem.2021.109382 CR - Basyigit, C., Uysal, V., Kilinçarslan, Ş., Mavi, B., Günoğlu, K., Akkurt, I., & Akkaş, A. (2011, December). Investigating radiation shielding properties of different mineral origin heavyweight concretes. In AIP conference proceedings, 1400(1), 232-235. https://doi.org/10.1063/1.3663119 CR - Biarrotte, J., Mueller, A. C. & Carluec B., (2004). PDS-XADS Preliminary Design Studies of an Experimental Accelerator-Driven System, Workshop Proceedings. CR - Dees, C. (2017). Neutron Radiation Shielding Strategies for Glovebox Applications (No. INL/CON-17-41743). Idaho National Lab.(INL), Idaho Falls, ID (United States). CR - Gencel, O., Bozkurt, A., Kam, E., Yaras, A., Erdogmus, E., & Sutcu, M. (2021). Gamma and neutron attenuation characteristics of bricks containing zinc extraction residue as a novel shielding material. Progress in Nuclear Energy, 139, 103878. https://doi.org/10.1016/j.pnucene.2021.103878 CR - Gökoğlan, E., Ekinci, M., Özgenç, E., Derya, İ. Ö., & AŞIKOĞLU, M. (2020). Radyasyon ve insan sağlığı üzerindeki etkileri. Anatolian Clinic the Journal of Medical Sciences, 25(3), 289-294. https://doi.org/10.21673/anadoluklin.709434 CR - Ipe, N. E., Fehrenbacher, G., Gudowska, I., Paganetti, H., Schippers, J., & Roesler, S. (2010). PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. https://www.ptcog.ch/archive/Software_and_Docs/Shielding_radiation_protection.pdf CR - Jumpee, C., & Wongsawaeng, D. (2015, April). Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron (III) oxide, In Journal of Physics: Conference Series, 611(1), 012019). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/611/1/012019 CR - Nami, Y. (2015). “Biological Effects of Radiation”, Nuclear Medicine Seminars, 1(3), 139-143. https://doi.org/ 10.4274/nts.0022 CR - Özcan, M., Kam, E., Kaya, C., & Kaya, F. (2022). Boron‐containing nonwoven polymeric nanofiber mats as neutron shields in compact nuclear fusion reactors. International Journal of Energy Research. https://doi.org/10.1002/er.7652 CR - Özdemir, T., Akbay, I. K., Uzun, H., & Reyhancan, I. A. (2016). Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Progress in Nuclear Energy, 89, 102-109. https://doi.org/10.1016/j.pnucene.2016.02.007 CR - Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238 CR - Rwashdy Q., Günoğlu K., Akyıldırım H., Akkurt İ. (2016), “Investigation of Radiation Shielding Properties of Some Steels”, 3rd International Conference on Computational and Experimental Science and Engineering. CR - Sarıyer, D. & Küçer, R., (2015). Study of Neutron Attenuation Properties of Materials of Different Density, SDU Journal of Science, 10(1), 49-53. CR - Sarıyer, D., Küçer, R., & Küçer, N. (2015). Neutron shielding properties of concretes containing boron carbide and ferro–boron. Procedia-Social and Behavioral Sciences, 195, 1752-1756. https://doi.org/10.1016/j.sbspro.2015.06.320 CR - Singh, V. P., & Badiger, N. M. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64, 301-310. https://doi.org/10.1016/j.anucene.2013.10.003 CR - Soltani, Z., Beigzadeh, A., Ziaie, F., & Asadi, E. (2016). Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies. Radiation Physics and Chemistry, 127, 182-187. https://doi.org/10.1016/j.radphyschem.2016.06.027 CR - Tesch, K., & Zazula, J. M. (1991). Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 300(1), 179-187. https://doi.org/10.1016/0168-9002(91)90721-2 CR - Tuna, T., & Bayrak, K. (2017). Investigation of the Shielding Capability of Concrete Matrixed Colemanite Reinforced Shielding Material. Journal of Engineering Technology and Applied Sciences, 2(2), 57-63. https://doi.org/10.30931/jetas.336562 CR - Tuna, T., Eker, A. A., & Kam, E. (2021). Neutron shielding characteristics of polymer composites with boron carbide. Journal of the Korean Physical Society, 78(7), 566-573. https://doi.org/10.1007/s40042-021-00089-z. UR - https://doi.org/10.55205/joctensa.11202235 L1 - https://dergipark.org.tr/tr/download/article-file/3812889 ER -