TY - JOUR T1 - NUMERICAL SOLUTIONS TO THE STOCHASTIC SYSTEMS WITH FRACTIONAL OPERATORS TT - KESİRLİ MERTEBELİ DİFERANSİYEL DENKLEMLERİN YENİ SAYISAL ÇÖZÜMLERİ AU - Akınlar, Mehmet Ali PY - 2024 DA - June Y2 - 2024 DO - 10.46460/ijiea.1459659 JF - International Journal of Innovative Engineering Applications JO - ijiea, IJIEA PB - Niyazi ÖZDEMİR WT - DergiPark SN - 2587-1943 SP - 43 EP - 52 VL - 8 IS - 1 LA - en AB - Fractional-stochastic differential equations are widely used tools to simulate a wide - range of engineering and scientific phenomena. In this paper, the applicability of the approach of indeterminate coefficients to various fractional-stochastic models is examined. These models have a fractional white noise term and are mostly produced by fractional-order derivative operators. We also investigate applications of a polynomial chaos algorithm to stochastic Lotka-Volterra and Benney systems. Fractional-stochastic equations are entirely novel systems that have the potential to function as models for a wide range of scientific and engineering phenomena. It is noted that fractional-order systems with uncertainty or a noise term can benefit from the effective use of Galerkin-type approaches in this article. KW - The Galerkin method KW - KW - Numerical Solutions KW - Fractional-Stochastic Differential Equations KW - N2 - Kesirli stokastik diferansiyel denklemler, çok çeşitli mühendislik ve bilimsel olguları simüle etmek için yaygın olarak kullanılan araçlardır. Bu makalede, belirsiz katsayılar yaklaşımının çeşitli kesirli stokastik modellere uygulanabilirliği incelenmiştir. Bu modeller kesirli beyaz gürültü terimine sahiptir ve çoğunlukla kesirli dereceli türev operatörleri tarafından üretilir. Ayrıca polinom kaos algoritmasının stokastik Lotka-Volterra ve Benney sistemlerine uygulamalarını da araştırıyoruz. Kesirli stokastik denklemler, çok çeşitli bilimsel ve mühendislik problemleri için model olarak işlev görme potansiyeline sahip tamamen yeni sistemlerdir. Bu makalede Galerkin tipi yaklaşımların etkin kullanımından ve belirsizlik veya gürültü terimi içeren kesirli dereceli sistemlere uygulanabilirliği araştırılmıştır. CR - Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J.J. (2012). Fractional Calculus: Models and Numerical Methods, World Scientific Publishing. CR - Özüpak, Y. (2023). Design and Analysis of Permanent Magnet DC Machines with FEM Based ANSYS-Maxwell, International Journal of Innovative Engineering Applications, 7(1), 7-12. CR - Cavlak Aslan, E., & Gürgöze, L. (2022). Soliton and Other Function Solutions of The Potential KdV Equation with Jacobi Elliptic Function Method, International Journal of Innovative Engineering Applications, 6(2), 183-188. CR - Dung, N.T. (2013). Fractional Stochastic Differential Equations with Applications to Finance, Journal of Mathematical Analysis and Applications, 397(1), 334-348. CR - Rihan, A.F., Rajivganthi, C., & Muthukumar, P. (2017). Fractional Stochastic Differential Equations with Hilfer Fractional Derivative: Poisson Jumps and Optimal Control, Discrete Dynamics in Nature and Society, Article ID 5394528. CR - Klebaner, F. C., & Liptser, R. (2001). Asymptotic analysis and extinction in a stochastic Lotka-Volterra model, The Annals of Applied Probability, 11(4), 1263-1291. CR - Kinoshita, S. (2013). 1-Introduction to Nonequilibrium Phenomena Pattern Formations and Oscillatory Phenomena, 1-59. CR - Zakharov, V. E. (1981). On the Benney equations, Physica D: Nonlinear Phenomena, 3(1-2), 193-202. CR - Pellegrini, G. (2014). Polynomial Chaos Expansion with applications to PDEs (Master dissertation, University of Verona). CR - Nualart, D. (2006). Fractional Brownian motion. The Malliavin Calculus and Related Topics. Probability, its applications. Springer, Berlin, Heidelberg. CR - Mahmud, A.A., Muhamad, K.A., Tanriverdi, T., & Baskonus, H.M. (2024). An investigation of Fokas system using two new modifications for the trigonometric and hyperbolic trigonometric function methods, Optical and Quantum Electronics, 56:717. CR - Mahmud, A. A., Tanriverdi, T., Muhamad, K. A., & Baskonus, H. M. (2023). Characteristic of ion-acoustic waves described in the solutions of the (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation, Journal of Applied Mathematics and Computational Mechanics, 22, 2, 36-48. CR - Mahmud, A. A., Baskonus, H. M., Tanriverdi, T., & Muhamad, K. A. (2023). Optical Solitary Waves and Soliton Solutions of the (3+1)-Dimensional Generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony Equation, Partial Differential Equations, 63, 1085-1102. CR - Baskonus, H. M., Mahmud, A. A., Muhamad, K. A., & Tanriverdi, T. (2022). A study on Caudrey–Dodd–Gibbon–Sawada–Kotera partial differential equation, Mathematical Methods in the Applied Sciences. CR - Tanriverdi, T., Baskonus, H. M., Mahmud, A. A., & Muhamad, K. A. (2021). Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system, Ecological Complexity, 48, 100966. UR - https://doi.org/10.46460/ijiea.1459659 L1 - http://dergipark.org.tr/tr/download/article-file/3825265 ER -