TY - JOUR T1 - STİREN AKRİLİK KOPOLİMER KULLANIMININ ÇİMENTO ESASLI KOMPOZİT HARÇLARIN PERFORMANSINA ETKİSİ TT - INFLUENCE OF USING STYRENE ACRYLIC COPOLYMER ADDITIVE ON THE PERFORMANCE OF CEMENT BASED COMPOSITE MORTARS AU - Kalkan, Şevket Onur AU - Gündüz, Lütfullah PY - 2025 DA - June Y2 - 2025 DO - 10.55071/ticaretfbd.1467719 JF - İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi PB - İstanbul Ticaret Üniversitesi WT - DergiPark SN - 1305-7820 SP - 1 EP - 22 VL - 24 IS - 47 LA - tr AB - Son yıllarda, çimentolu ürünlerin fiziksel ve mekanik özelliklerinin iyileştirilmesi amacıyla polimer katkıların önem kazandığı görülebilmektedir. Bu katkılardan önemli bir tanesi de stiren akrilik kopolimer katkıdır. Bu çalışmada, stiren akrilik kopolimer (SAK) kullanımının çimento esaslı kompozit harçların performansı üzerindeki etkisine, özellikle, SAK kullanımının harçtaki yayılma, birim hacim ağırlık, su emme, eğilme ve basınç dayanımı, büzülme ve şişme karakteristiğine olan etkileri araştırılmıştır. Çalışma sonuçlarına göre, SAK ile çimento yer değiştirme oranı arttıkça harçların yayılma ve kuru ve yaş birim hacim ağırlık değerleri azalmıştır. SAK kullanımının en önemli olumlu katkısı ise SAK kullanım oranı arttıkça harçların kütlece su emme değerlerinin azalması ve eğilme dayanımlarının önemli ölçüde iyileşmesi olarak tespit edilmiştir. Bunun yanında SAK kullanım oranı arttıkça harçların basınç dayanımları ve şişme değerleri azalmış, büzülme değerlerinin ise arttığı gözlemlenmiştir. KW - Polimer KW - stiren akrilik kopolimer KW - hafif harç KW - kompozit harç KW - performans N2 - In recent years, it can be seen that polymer admixtures have gained importance in order to improve the physical and mechanical properties of cementitious products. One of these admixtures is the styrene acrylic copolymer admixture. In this study, the effect of styrene acrylic copolymer (SAK) use on the performance of cement-based composite mortars, especially the effects of SAK use on the dispersion, unit volume weight, water absorption, bending and compressive strength, shrinkage and swelling characteristics of the mortar, were investigated. According to the study results, as the cement displacement rate with SAK increased, the spread and dry and wet unit volume weight values of the mortars decreased. It has been determined that the most important positive contribution of the use of SAK is that as the rate of SAK usage in mortars increases, the mass water absorption values of the mortars decrease, and their bending strength improves significantly. In addition, it was observed that as the SAK usage rate increased, the compressive strength and swelling values of the mortars decreased, and the shrinkage values increased. CR - Aggarwal, L. K., Thapliyal, P. C., & Karade, S. R. (2007). Properties of polymer-modified mortars using epoxy and acrylic emulsions. Construction and Building Materials, 21(2), 379–383. CR - Akgül, M., Dogan, O., & Etli, S. (2020). Farklı çimento ile üretilen granül atık kauçuk agregaların ikame edilmiş kendiliğinden yerleşen beton harcının mekanik özelliklerinin incelenmesi. International Journal of Engineering Research and Development, 12(2), 787–798. CR - Akgül, M., & Etli, S. (2024). Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height. Construction and Building Materials, 428, 136300. CR - Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., & Ibrahim, M. (2003). Mechanical properties and durability characteristics of polymer-and cement-based repair materials. Cement and Concrete Composites, 25(4–5), 527–537. CR - Assaad, J. J. (2018). Development and use of polymer-modified cement for adhesive and repair applications. Construction and Building Materials, 163, 139–148. CR - Assaad, J. J., & Gerges, N. (2019). Styrene-butadiene rubber modified cementitious grouts for embedding anchors in humid environments. Tunnelling and Underground Space Technology, 84, 317–325. CR - Assaad, J. J., & Issa, C. A. (2017). Effect of recycled acrylic-based polymers on bond stress-slip behavior in reinforced concrete structures. Journal of Materials in Civil Engineering, 29(1), 4016173. CR - ASTM. (2013). ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. CR - Berkak, H., Bederina, M., & Makhloufi, Z. (2020). Physico-mechanical and microstructural properties of an eco-friendly limestone mortar modified with styrene-polyacrylic latex. Journal of Building Engineering, 32, 101463. CR - Chew, M. Y. L., Tan, P. P., & Yeo, Y. S. (2004). Effect of styrene acrylic ester polymer on mortar render properties. Architectural Science Review, 47(1), 43–52. CR - Cruz, E. O., Radler, M. J., Perello, M., & Savastano Jr, H. (2021). Fiber cement boards modified with styrene-acrylic copolymer: An approach to address dimensional stability and cellulose fiber preservation. Journal of Composite Materials, 55(3), 437–452. CR - Demirdag, S., & Gunduz, L. (2008). Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construction and Building Materials, 22(3), 135–142. CR - Diamanti, M. V., Brenna, A., Bolzoni, F., Berra, M., Pastore, T., & Ormellese, M. (2013). Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, 49, 720–728. CR - Ercan, T., Dinçel, A., Metin, S., Türkecan, A., & Günay, E. (1978). Uşak Yöresinin Neojen Havzaları Jeolojisi. Türkiye Jeoloji Kurumu Bülteni, 21(2), 104. CR - Ercan, T., Türkecan, A., Dinçel, A., & Günay, E. (1983). Kula-Selendi (Manisa) dolaylarının jeolojisi. Jeoloji Mühendisliği, 17, 3–29. CR - Etli, S. (2023). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. CR - Etli, S. (2024). Mechanical Properties of Self-Compacting Mortars Containing Rubber Waste Particles as Fine Aggregate in Freeze–Thaw Cycles. Journal of Materials in Civil Engineering, 36(9), 4024246. CR - Feiteira, J., & Ribeiro, M. S. (2013). Polymer action on alkali–silica reaction in cement mortar. Cement and Concrete Research, 44, 97–105. CR - Gesoglu, M., Güneyisi, E., Hansu, O., Etli, S., & Alhassan, M. (2017). Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Construction and Building Materials, 140, 562–569. CR - Gündüz, L., & Kalkan, Ş. O. (n.d.). İnce pomza agreganın çimento esaslı kendiliğinden yayılan tesviye şapının performansına etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 1. CR - Gündüz, L., & Kalkan, Ş. O. (2023). The effect of different natural porous aggregates on thermal characteristic feature in cementitious lightweight mortars for sustainable buildings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47, 843–861. CR - Kharazian, H. A., Zare, M. R., Noktehdan, M., & Sedaghatdoost, A. (2019). Effect of water-based acrylic copolymer on void systems of cementitious repair mortar. Case Studies in Construction Materials, 11, e00261. CR - Knapen, E., & Van Gemert, D. (2009). Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research, 39(1), 6–13. CR - Knapen, E., & Van Gemert, D. (2015). Polymer film formation in cement mortars modified with water-soluble polymers. Cement and Concrete Composites, 58, 23–28. CR - Kong, X., Pakusch, J., Jansen, D., Emmerling, S., Neubauer, J., & Goetz-Neuhoeffer, F. (2016). Effect of polymer latexes with cleaned serum on the phase development of hydrating cement pastes. Cement and Concrete Research, 84, 30–40. CR - Lavelle, J. A. (1988). Acrylic latex-modified Portland cement. Materials Journal, 85(1), 41–48. CR - Lee, J.-B. (2017). Physical properties of polymer-modified cement mortars by the functional additives and modification of polymerization. Journal of Ceramic Processing Research, 18(3), 220–229. CR - Lenart, M. (2015). Assessment of mortar shrinkage in aspect of organic and inorganic modifiers use. Procedia Engineering, 108, 309–315. CR - Lho, B. C., Joo, M. K., Choi, K. H., & Choi, J. Y. (2012). Effects of polymer-binder ratio and slag content on strength properties of autoclaved polymer-modified concrete. KSCE Journal of Civil Engineering, 16, 803–808. CR - Ma, H., & Li, Z. (2013). Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms. Construction and Building Materials, 47, 579–587. CR - Medeiros, M. H. F., Helene, P., & Selmo, S. (2009). Influence of EVA and acrylate polymers on some mechanical properties of cementitious repair mortars. Construction and Building Materials, 23(7), 2527–2533. CR - Mermerdaş, K., Algın, Z., Ekmen, Ş., & Karadağ, M. (2021). Stiren-Bütadien Kauçuk Lateks Modifiyeli Harçların Erken Yaştaki Fiziksel ve Mekanik Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi, 10(2), 154–162. CR - Meyer, J. (1974). Stability of polymer composites as positive‐temperature‐coefficient resistors. Polymer Engineering & Science, 14(10), 706–716. CR - Mirza, J., Mirza, M. S., & Lapointe, R. (2002). Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Construction and Building Materials, 16(6), 365–374. CR - Montanaro, L., Festa, D., Bachiorrini, A., & Penati, A. (1990). Influence of added polymer emulsions on the short-term physical and mechanical characteristics of plastic mortar. Cement and Concrete Research, 20(1), 62–68. CR - Muhammad, B., & Ismail, M. (2012). Performance of natural rubber latex modified concrete in acidic and sulfated environments. Construction and Building Materials, 31, 129–134. CR - Ning, Y., Er-lei, B., Jin-yu, X., Guang, P., & Bo-xu, M. (2018). Study on tensile mechanical property of styrene-acrylic cement composite material. IOP Conference Series: Earth and Environmental Science, 153(2), 22022. CR - Ohama, Y. (1997). Recent progress in concrete-polymer composites. Advanced Cement Based Materials, 5(2), 31–40. CR - Ohama, Y. (1998). Polymer-based admixtures. Cement and Concrete Composites, 20(2–3), 189–212. CR - Ohama, Y., Demura, K., Hamatsu, M., & Kakegawa, M. (1991). Properties of polymer-modified mortars using styrene-butyl acrylate latexes with various monomer ratios. Materials Journal, 88(1), 55–61. CR - Pei, M., Kim, W., Hyung, W., Ango, A. J., & Soh, Y. (2002). Effects of emulsifiers on properties of poly (styrene–butyl acrylate) latex-modified mortars. Cement and Concrete Research, 32(6), 837–841. CR - Ramli, M., & Tabassi, A. A. (2012). Effects of polymer modification on the permeability of cement mortars under different curing conditions: a correlational study that includes pore distributions, water absorption and compressive strength. Construction and Building Materials, 28(1), 561–570. CR - Schulze, J., & Killermann, O. (2001). Long-term performance of redispersible powders in mortars. Cement and Concrete Research, 31(3), 357–362. CR - Selim, C., Serkan, E., & Onur, O. (2018). Curing effect on mortar properties produced with styrene-butadiene rubber. Computers and Concrete, 21(6), 705–715. https://doi.org/10.12989/CAC.2018.21.6.705 CR - Senff, L., Modolo, R. C. E., Ascensão, G., Hotza, D., Ferreira, V. M., & Labrincha, J. A. (2015). Development of mortars containing superabsorbent polymer. Construction and Building Materials, 95, 575–584. CR - Shete, G. N., & Upase, K. S. (2014). Evaluation of compressive strength and water absorption of styrene butadiene rubber (SBR) latex modified concrete. International Journal of Modern Engineering Research (IJMER), 4(10), 40–44. CR - Su, Z., Sujata, K., Bijen, J., Jennings, H. M., & Fraaij, A. L. A. (1996). The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration. Advanced Cement Based Materials, 3(3–4), 87–93. CR - TS EN 13872, Perdah ve/veya tesviye işlerinde kullanılan ve hidrolik priz alabilen bileşiklere uygulanacak deney metotları - Büzülmenin tayini. (2010). CR - Turkish Standards Institution. (2000a). TS EN 1015-3 - Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table). CR - Turkish Standards Institution. (2000b). TS EN 1015-6, Methods of test for mortar for masonry - Part 7: Determination of air content of fresh mortar. CR - Turkish Standards Institution. (2001). TS EN 1015-10, Methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar. CR - Wang, R., & Wang, P. (2010). Function of styrene-acrylic ester copolymer latex in cement mortar. Materials and Structures, 43, 443–451. CR - Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1–16. CR - Wong, W. G., Fang, P., & Pan, J. K. (2003). Dynamic properties impact toughness and abrasiveness of polymer-modified pastes by using nondestructive tests. Cement and Concrete Research, 33(9), 1371–1374. CR - Xue, X., Yang, J., Zhang, W., Jiang, L., Qu, J., Xu, L., Zhang, H., Song, J., Zhang, R., & Li, Y. (2015). The study of an energy efficient cool white roof coating based on styrene acrylate copolymer and cement for waterproofing purpose—Part II: Mechanical and water impermeability properties. Construction and Building Materials, 96, 666–672. CR - Zhang, S., Li, G. Z., & Ning, C. (2011). Properties of the Mortar Modified with the Styrene-Acrylic Emulsion. Advanced Materials Research, 194, 1022–1025. CR - Zhang, X., Li, G., & Song, Z. (2019). Influence of styrene-acrylic copolymer latex on the mechanical properties and microstructure of Portland cement/Calcium aluminate cement/Gypsum cementitious mortar. Construction and Building Materials, 227, 116666. CR - Zhong, S., & Chen, Z. (2002). Properties of latex blends and its modified cement mortars. Cement and Concrete Research, 32(10), 1515–1524. UR - https://doi.org/10.55071/ticaretfbd.1467719 L1 - https://dergipark.org.tr/tr/download/article-file/3859574 ER -