TY - JOUR T1 - ChatGPT 3.5, ChatGPT 4.0 ve Hemşirelik Öğrencilerinin Çocuk Acillerde Hemşirelik Yaklaşımı Dersi Sınavındaki Performans Karşılaştırmaları TT - Comparison of CHATGPT 3.5, CHATGPT 4.0 And Nursing Students' Performance in the Nursing Approach in Child Emergencies Course Examinatıon AU - Aydın, Ayla İrem AU - Reis, Doğukan PY - 2025 DA - April Y2 - 2025 DO - 10.46413/boneyusbad.1472077 JF - Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi PB - Bandırma Onyedi Eylül Üniversitesi WT - DergiPark SN - 2687-2145 SP - 73 EP - 79 VL - 7 IS - 1 LA - tr AB - Amaç: Bu çalışmanın amacı, ChatGPT modelleri ve öğrenci hemşirelerin çocuk acillerde hemşirelik yaklaşımı dersindeki başarı performanslarını karşılaştırmaktır. Gereç ve Yöntem: Bu çalışma retrospektif ve karşılaştırmalı bir analiz olarak tasarlanmıştır. Çalışma bir devlet üniversitesinin hemşirelik bölümünde çocuk acillerde hemşirelik yaklaşımı dersinin yarıyıl sonu sınav soruları kullanılarak yapılmıştır. Sınavda yer alan beş seçenekli çoktan seçmeli 40 soru, ChatGPT 3.5 ve ChatGPT 4.0 modellerine yöneltilerek yanıtlanmıştır. Sorulara verilen cevaplar yapay zeka robotlarının verdikleri cevaplarla ve dersi alan öğrenci hemşirelerin verdikleri cevapların ortalamalarıyla karşılaştırılmıştır.Bulgular: ChatGPT 4.0 sorular %90 oranında doğru yanıt verirken, öğrenciler %82.32 oranında doğru yanıt vermiştir. En düşük doğru yanıt oranı %55 ile ChatGPT 3.5 modelindedir. Bu sınavda en yüksek başarıyı sırasıyla ChatGPT 4.0, öğrenciler ve ChatGPT 3.5 elde etmiştir (p KW - Büyük dil modelleri KW - ChatGPT KW - Çocuk acil hemşireliği KW - Yapay zeka. N2 - Aim: The aim of this study was to compare the success performances of ChatGPT models and student nurses in the course of nursing approach in pediatric emergencies.Materials and Method: This study was designed as a retrospective and comparative analysis. The study was conducted by using the end-of-semester exam questions of the nursing approach in pediatric emergencies course in the nursing department of a state university. In the exam, 40 multiple-choice questions with five options were directed to ChatGPT 3.5 and ChatGPT 4.0 models. The answers given to the questions were compared with the answers given by the artificial intelligence robots and the averages of the answers given by the student nurses taking the course.Results: ChatGPT 4.0 gave 90% correct answers to the questions, while the students gave 82.32% correct answers. The lowest correct response rate was 55% for ChatGPT 3.5. In this exam, ChatGPT 4.0, students and ChatGPT 3.5 achieved the highest success respectively (p < 0.05).Conclusion: ChatGPT 4.0 performed well with the correct suggestions it provided on nursing approach in pediatric emergencies. Artificial intelligence-based systems can be used in nursing education as a reference tool to assist the instructor and students of the course. It is important to develop strategies and conduct studies on how these technologies can be used more effectively in nursing education. CR - Alkhaqani, A. L. (2023). ChatGPT and academic integrity in nursing and health sciences education. Journal of Medical Research and Reviews, 1(1), 5-8. doi: 10.5455/JMRR.20230624044947 CR - Asker, Ö. F., Özgür, E. G., Eriç, A., Bekiroğlu, N. (2023). Comparing the performance of medical students, chatgpt-3.5 and chatgpt-4 in biostatistics exam: pros and cons as an education assistant: a cross-sectional research. International Journal of Management Information Systems and Computer Science, 7(2), 85-94. doi: 10.33461/uybisbbd.1329650 CR - Aydın, A. İ., Özyazıcıoğlu, N. (2023). Assessment of postoperative pain in children with computer assisted facial expression analysis. Journal of Pediatric Nursing, 71, 60–65. doi:10.1016/j.pedn.2023.03.008 CR - Barata, I. A., Stadnyck, J. M., Akerman, M., OʼNeill, K., Castaneda, J., Subramony, A., … DʼAngelo, J. (2020). Novel approach to emergency departments' pediatric readiness across a health system. Pediatric Emergency Care, 36(6), 274–276. doi:10.1097/PEC.0000000000001385. CR - Chow, J. C. L., Sanders, L., Li, K. (2023). Impact of ChatGPT on medical chatbots as a disruptive technology. Frontiers in Artificial Intelligence, 6, 1166014. doi: 10.3389/frai.2023.1166014 CR - Conlon, C., McDonnell, T., Barrett, M., Cummins, F., Deasy, C., Hensey, C., …Nicholson, E. (2021). The impact of the COVID-19 pandemic on child health and the provision of Care in Paediatric Emergency Departments: a qualitative study of frontline emergency care staff. BMC Health Services Research, 21(1), 279. doi:10.1186/s12913-021-06284-9 CR - Handa, P., Chhabra, D., Goel, N., Krishnan, S. (2023). Exploring the role of ChatGPT in medical image analysis. Biomedical Signal Processing and Control, 86, 105292. doi: 10.1016/j.bspc.2023.105292 CR - Hockenberry, M. J., Wilson, D., Rodgers, C. C. (2021). Wong's essentials of pediatric nursing-e-book. Elsevier Health Sciences. CR - Huang, H., Zheng, O., Wang, D., Yin, J., Wang, Z., Ding, S., …Shi, B. (2023b). ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model. International Journal of Oral Science, 15(1), 29. doi: 10.1038/s41368-023-00239-y CR - Huang, Y., Gomaa, A., Semrau, S., Haderlein, M., Lettmaier, S., Weissmann, T., …Putz, F. (2023a). Benchmarking ChatGPT-4 on a radiation oncology in-training exam and Red Journal Gray Zone cases: potentials and challenges for ai-assisted medical education and decision making in radiation oncology. Frontiers in Oncology, 13, 1265024. doi: 10.3389/fonc.2023.1265024 CR - Huang, H. (2023). Performance of ChatGPT on registered nurse license exam in Taiwan: A descriptive study. Healthcare, 11(21), 2855. doi: 10.3390/healthcare11212855 CR - Lewandowski, M., Łukowicz, P., Świetlik, D., Barańska-Rybak, W. (2023). An original study of ChatGPT-3.5 and ChatGPT-4 dermatological knowledge level based on the dermatology specialty certificate examinations. Clinical and Experimental Dermatology, llad255. doi: 10.1093/ced/llad255 CR - Moore, B., Shah, M. I., Owusu-Ansah, S., Gross, T., Brown, K., Gausche-Hill, M., ...American Academy of Pediatrics Committee on Pediatric Emergency Medicine. (2020). Pediatric readiness in emergency medical services systems. Pediatrics, 145(1). doi: 10.1542/peds.2019-3307 CR - Ni, Z., Peng, R., Zheng, X., Xie, P. (2024). Embracing the future: Integrating ChatGPT into China’s nursing education system. International Journal of Nursing Sciences, 11(2), 295-299. doi: 10.1016/j.ijnss.2024.03.006 CR - OpenAI. (2023). ChatGPT. Erişim adresi (01.04.2024): https://openai.com/chatgpt CR - Sahyoun, C., Cantais, A., Gervaix, A., Bressan, S., Löllgen, R., Krauss, B., …Pediatric Emergency Medicine Comfort and Analgesia Research in Europe (PemCARE) group of the Research in European Pediatric Emergency Medicine (2021). Pediatric procedural sedation and analgesia in the emergency department: surveying the current European practice. European Journal of Pediatrics, 180(6), 1799–1813. doi: 10.1007/s00431-021-03930-6 CR - Sanchez-Ramos, L., Lin, L., Romero, R. (2023). Beware of references when using ChatGPT as a source of information to write scientific articles. American Journal of Obstetrics and Gynecology, 229(3), 356–357. doi: 10.1016/j.ajog.2023.04.004 CR - Su, M. C., Lin, L. E., Lin, L. H., Chen, Y. C. (2024). Assessing question characteristic influences on ChatGPT's performance and response-explanation consistency: Insights from Taiwan's nursing licensing exam. International Journal of Nursing Studies, 153, 104717. Advance online publication. doi: 10.1016/j.ijnurstu.2024.104717 CR - Taira, K., Itaya, T., Hanada, A. (2023). Performance of the large language model ChatGPT on the national nurse examinations in Japan: Evaluation Study. JMIR Nursing, 6, e47305. doi: 10.2196/47305 CR - Talan, T., Kalınkara, Y. (2023). The role of artificial intelligence in higher education: ChatGPT assessment for anatomy course. International Journal of Management Information Systems and Computer Science, 7(1), 33-40. https://doi.org/10.33461/uybisbbd.1244777 CR - von Gerich, H., Moen, H., Block, L. J., Chu, C. H., DeForest, H., Hobensack, M., …Peltonen, L. M. (2022). Artificial Intelligence -based technologies in nursing: A scoping literature review of the evidence. International Journal of Nursing Studies, 127, 104153. doi: 10.1016/j.ijnurstu.2021.104153 CR - Walker, D. M., Tolentino, V. R. (2020). COVID-19: The impact on pediatric emergency care. Pediatric Emergency Medicine Practice, 17(Suppl 6-1), 1–27. CR - Watari, T., Takagi, S., Sakaguchi, K., Nishizaki, Y., Shimizu, T., Yamamoto, Y., …Tokuda, Y. (2023). Performance comparison of Chatgpt-4 and Japanese medical residents in the general medicine in-training examination: Comparison Study. JMIR Medical Education, 9, e52202. doi: 10.2196/52202 UR - https://doi.org/10.46413/boneyusbad.1472077 L1 - https://dergipark.org.tr/tr/download/article-file/3878786 ER -