TY - JOUR T1 - Pasif venturi aktüatörlü bir silindir etrafındaki akış: Reynolds sayısı ve hücum açısının etkileri TT - Flow past a cylinder with a passive venturi actuator: Effects of Reynolds number and angle of attack AU - Fırat, Erhan AU - Seyhan, Mehmet PY - 2025 DA - June Y2 - 2025 DO - 10.17714/gumusfenbil.1474494 JF - Gümüşhane Üniversitesi Fen Bilimleri Dergisi PB - Gümüşhane Üniversitesi WT - DergiPark SN - 2146-538X SP - 331 EP - 348 VL - 15 IS - 2 LA - tr AB - Bu çalışmanın temel amacı, Reynolds sayısı (Re) ve hücum açısının (α) yeni geliştirilen bir akış kontrol yöntemi olan Pasif Venturi Aktüatör’ünü (PVA) içeren bir silindirin aerodinamik karakteristikleri üzerindeki etkilerini araştırmaktır. Bu amaçla hem aerodinamik kuvvet ölçümleri hem de hesaplamalı akışkanlar dinamiği (HAD) benzetimleri gerçekleştirilmiştir. Deneysel çalışmanın Reynolds sayıları Re=28000 ile 80000 arasında değişmektedir. Deneysel çalışmanın hücum açıları α=-30° ile +30° arasında değişmektedir. PVA içeren ve içermeyen silindir için HAD benzetimleri Re=36000 ve α=0°’de gerçekleştirilmiştir. Kuvvet ölçümleri kullanılarak elde edilen bulgular, zaman ortalamalı direnç katsayısı (C_D ) ̅ ile Re arasında oldukça doğrusal bir ilişki olduğunu göstermiştir. α=0° için Re değerinin 28000’den 80000’e arttırılması (C_D ) ̅ değerinde bir düşüşe neden olmuştur. Sonuçlar, test edilen hücum açısı ne olursa olsun, PVA’lı silindirin PVA’sız silindire kıyasla daha düşük bir (C_D ) ̅ sergilediğini göstermektedir. Ayrıca PVA’nın benzer Re aralığında test edilen pasif kontrol yöntemlerine kıyasla çok iyi bir direnç performansı sergilediği de karşılaştırmalı olarak gösterilmiştir. KW - Akış kontrolü KW - Dairesel silindir KW - Direnç düşürme KW - Hesaplamalı akışkanlar dinamiği (HAD) KW - Pasif venturi aktuatorü (PVA) KW - Rüzgar tüneli N2 - The main objective of this study is to investigate the effects of Reynolds number (Re) and angle of attack (α) on the aerodynamic characteristics of a cylinder with a recently developed flow control method, Passive Venturi Actuator (PVA). To this end, both aerodynamic force measurements and computational fluid dynamics (CFD) simulations have been carried out. The Reynolds numbers of the experimental study ranged from Re=28000 to 80000. The attack angles of the experimental study ranged from α=-30° to +30°. For the cylinder with and without PVA, CFD simulations were conducted at Re=36000 and α=0°. Findings based on using the force measurements showed a fairly linear relationship between the time-averaged drag coefficient, (C_D ) ̅, and Re. For α=0°, an increase in the Re from 28000 to 80000 resulted in a reduction in the (C_D ) ̅. The results demonstrate that regardless of the attack angle tested, the cylinder with PVA exhibits a lower (C_D ) ̅ compared to the cylinder without PVA. It has also been shown comparatively that PVA exhibits very good drag performance compared to passive control methods tested with it in a similar Re range. CR - Allen, H. J., & Vincenti, W. G. (1944). Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility. NACA, 1944, Report No 782. https://ntrs.nasa.gov/citations/19930091861 CR - Altair Engineering, Inc. (2024, February 2). Inlet turbulence parameters. https://help.altair.com/hwcfdsolvers/acusolve/topics/acusolve/training_manual/inlet_turb_params_r.htm CR - Akbıyık, H., & Akansu, Y. E. (2021). Effective flow control around a circular cylinder by using both a splitter plate and plasma actuators as passive and active control methods. Journal of Thermal Science and Technology, 41(1), 133-140. https://doi.org/10.47480/isibted.979377 CR - Aksoy, M. H. (2024). Flow characteristics and passive flow control of circular cylinders with triangular vortex generators: An experimental investigation. Applied Ocean Research, 142, 103836. https://doi.org/10.1016/j.apor.2023.103836 CR - ANSYS, Inc. (2013a). ANSYS Fluent User’s Guide, Release 15.0 [PDF slides] CR - ANSYS, Inc. (2013b). ANSYS Fluent Theory Guide, Release 15.0 [PDF slides] CR - Butt, U., Jehring, L., & Egbers, C. (2014). Mechanism of drag reduction for circular cylinders with patterned surface. International Journal of Heat and Fluid Flow,45, 128-134. http://dx.doi.org/10.1016/j.ijheatfluidflow.2013.10.008 CR - Cheng, W., Pullin, D. I., Samtaney, R., Zhang, W., & Gao, W. (2017). Large-eddy simulation of flow over a cylinder with Re=3.9×103 to 8.5×105: a skin-friction perspective. Journal of Fluid Mechanics, 820, 121-158. https://doi.org/10.1017/jfm.2017.172 CR - Chen, W.-L., Min, X.-W., & Guo, Y.-J. (2022). Performance of seal vibrissa-inspired bionic surface in suppressing aerodynamic forces and vortex shedding around a circular cylinder. Ocean Engineering, 260, 112032. https://doi.org/10.1016/j.oceaneng.2022.112032 CR - Clapperton, B. L., & Bearman, P. W. (2018). Control of circular cylinder flow using distributed passive jets Journal of Fluid Mechanics, 848, 1157-1178. https://doi.org/10.1017/jfm.2018.399 CR - Darabasz, T. Bonnavion, G., Cadot, O., Goraguer, Y., & Borée, J. (2023). Drag reduction using longitudinal vortices on a flat-back Ahmed body. Experiments in Fluids, 64, 20. https://doi.org/10.1007/s00348-022-03555-x CR - Fırat, E., Seyhan, M., & Sarıoğlu, M. (2023). SAS türbülans modeli performansının bazı dış akış durumları için kıyaslamalı incelenmesi. Çoğun, H., Parlar, İ., & Üzmuş, H. (Editörler). Doğa ve Mühendislik Bilimlerinde Güncel Tartışmalar 8, (ss. 77-92), Bilgin Kültür Sanat Yayınları. https://www.bidgecongress.org/wp-content/uploads/2023/07/Doga-ve-Muhendislik-Bilimlerinde-Guncel-Tartismalar-8-11.pdf CR - Firat, E., Seyhan, M., & Ozkan, G. M. (2024). Aerodynamic drag improvements on a circular cylinder using passive Venturi actuators. Physics of Fluids, 36, 025168. https://doi.org/10.1063/5.0188890 CR - Gad-el-Hak, M. (2000). Flow Control: Passive, Active and Reactive Flow Management (1st ed.). Cambridge University Press. CR - Galvao, R., Lee, E., Farrell, D., Hover, F., Triantafyllou, M., Kitney, N., & Beynet, P. (2008). Flow control in flow-structure interaction. Journal of Fluids and Structures, 24(8), 1216-1226. https://doi.org/10.1016/j.jfluidstructs.2008.07.006 CR - Gao, D., Chang, X., Tursuntohti, V, Yu, H., & Chen, W.-L. (2022). Modification of subcritical cylinder flow with an upstream rod. Physics of Fluids, 34, 015107. https://doi.org/10.1063/5.0075167 CR - Gao, D.-L., Chen, G.-B., Huang, Y.-W., Chen, W.-L., & Li, H. (2020). Flow characteristics of a fixed circular cylinder with an upstream splitter plate: On the plate-length sensitivity. Experimental Thermal and Fluid Science, 117, 110135. https://doi.org/10.1016/j.expthermflusci.2020.110135 CR - Gu, F., Wang, J. S., Qiao, X. Q., & Huang, Z. (2012). Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates. Journal of Fluids and Structures, 28, 263–278. https://doi.org/10.1016/j.jfluidstructs.2011.11.005 CR - Kim, W.-L. & Menon, S. (1999). An unsteady incompressible Navier–Stokes solver for Large Eddy Simulation of turbulent flows. International Journal for Numerical Methods in Fluids, 31, 983-1017. https://doi.org/10.1002/(SICI)1097-0363(19991130)31:6%3C983::AID-FLD908%3E3.0.CO;2-Q CR - Lloyd T. P., & James, M. (2016). Large eddy simulations of a circular cylinder at Reynolds numbers surrounding the drag crisis. Applied Ocean Research, 59, 676-686. https://doi.org/10.1016/j.apor.2015.11.009 CR - Lin, Y. F., Bai, H. L., Alam, M. M., Zhang, W. G., & Lam, K. (2016). Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder. Journal of Fluids and Structures, 61, 392-409. https://doi.org/10.1016/j.jfluidstructs.2015.12.004 CR - Nicoud, F., & Ducros, F. (1999). Subgrid-Scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183-200. https://doi.org/10.1023/A:1009995426001 CR - Norberg, C. (2003). Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures, 17, 57–96. https://doi.org/10.1016/S0889-9746(02)00099-3 CR - Prsic, M. A., Ong, M. C., Pettersen, B., & Myrhaug, D. (2014). Large Eddy Simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime. Ocean Engineering, 77, 61-73. https://doi.org/10.1016/j.oceaneng.2013.10.018 CR - Seyhan, M., & Fırat, E. (2022). Yan rüzgar koşullarında ön kısmı düz plakalı bir otobüs modeli üzerindeki aerodinamik direncin düşürülmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1163-1171. https://doi.org/10.28948/ngumuh.1141511 CR - Tunay, T. (2023a). Large Eddy Simulation of the Biased Wake Flow Downstream of Circular Cylinders with a Slit. OKU Journal of The Institute of Science and Technology, 6(2), 1481-1499. CR - Tunay, T. (2023b). Numerical Investigation of the Passive Flow Control Around a Circular Cylinder. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 243-252. CR - UKAS (2024). The Expression of Uncertainty and Confidence in Measurement (M3003), Edition 5 [PDF Slides] https://www.ukas.com/wp-content/uploads/2023/05/M3003-The-expression-of-uncertainty-and-confidence-in-measurement.pdf CR - Xu, F., Chen, W.-L., Duan, Z.-D., & Ou, J.-P. (2020). Large eddy simulation of passive jet flow control on the wake of flow around a circular cylinder. Computers and Fluids, 196, 104342. https://doi.org/10.1016/j.compfluid.2019.104342 CR - Yemenici, O., & Kasap, H. (2023). Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 581–587. https://doi.org/10.28948/ngumuh.1232871 CR - Yu, H., Gao, D., Chen, W.-L., & Deng, Z. (2023). Effects of a pair of adjacent rods on circular cylinder flow. Journal of Visualization, 26, 1037–1053. https://doi.org/10.1007/s12650-023-00919-1 CR - Zheng, C., Sun, K., & Zhang, W. (2021). Effects of passive and combined aerodynamic control on the aerodynamic characteristics of an elliptical cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 218, 104779. https://doi.org/10.1016/j.jweia.2021.104779 CR - Zhou, B., Wang, X., Guo, W., Gho, W. M., & Tan, S. K. (2015). Experimental study on flow past a circular cylinder with rough surface. Ocean Engineering, 109, 7–13. http://dx.doi.org/10.1016/j.oceaneng.2015.08.062 UR - https://doi.org/10.17714/gumusfenbil.1474494 L1 - https://dergipark.org.tr/tr/download/article-file/3889208 ER -