TY - JOUR T1 - Synthesis of (Cr,V)xCy-T MXene Materials from (Cr,V)2AlC MAX Phase Produced via Powder Metallurgy Methods AU - Arısoy, Cevat Fahir AU - Ateş, Semih AU - Süzer, İlayda AU - Erol, Ahmet Mirza AU - Tok, Ahmed Emin AU - Demircan, Berkay AU - Yazıcı, Hüseyin Kerim AU - Öveçoğlu, Lütfi AU - Ağaoğulları, Duygu PY - 2024 DA - July Y2 - 2024 JF - ITU Journal of Metallurgy and Materials Engineering PB - İstanbul Teknik Üniversitesi WT - DergiPark SN - 3062-0406 SP - 16 EP - 21 VL - 1 IS - 1 LA - en AB - MAX (Mn+1AXn) phases represent a class of ternary metallic ceramics distinguished by their remarkable properties, rendering them highly sought after across various applications. Among these, their role as precursors for the production of 2D MXene materials stands out prominently in the realm of advanced ceramics. MXenes are obtained through the selective etching of the A-element layers from MAX phases, resulting in ultrathin layers with unique characteristics. The predominant method for MXene synthesis involves wet chemical processes, typically employing HF etching. These layered structures exhibit exceptionally high surface areas, positioning them as frontrunners for electronic applications. In this study, (Cr,V)2AlC precursor was produced by pressureless sintering of mechanically milled pure metallic powder mixtures. Subsequently, the MAX phase precursor was subjected to HF etching to obtain (Cr,V)-C-based MXenes. Both MAX and MXenes were analysed with XRD, SEM-EDS methods, and micro-hardness measurements. According to the results, the Optimal morphology which revealed a layered MXene structure for wet chemical etching of produced MAX phase materials was obtained after 4 hours of high-energy ball-milled Cr, V, Al, and C starting powder mixtures. Furthermore, the surface terminations (-T) which are an inevitable consequence of the regular chemical etching process, were identified following the analysis of the etched MXenes. In conclusion, this study accentuates the importance of optimizing synthesis methods for MAX phases to obtain tailored MXene materials, crucial for advancing applications in advanced ceramics. KW - MAX KW - MXene KW - powder metallurgy CR - Abderrahim, F. Z., Faraoun, H. I., & Ouahrani, T. (2012). Structure, bonding and stability of semi-carbides M2C and sub-carbides M4C (M=V, Cr, Nb, Mo, Ta, W): A first-principles investigation. Physica B: Condensed Matter, 407(18), 3833-3838. https://doi.org/10.1016/j.physb.2012.05.070 CR - Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J., & Zhang, C. (John). (2021). Perspectives on solution processing of two-dimensional MXenes. Materials Today, 48, 214-240. https://doi.org/10.1016/j.mattod.2021.02.010 CR - Ali, G., Iqbal, M. Z., & Iftikhar, F. J. (2021). MXene. In Advances in Supercapacitor and Supercapattery (pp. 255-269). Elsevier. https://doi.org/10.1016/B978-0-12-819897-1.00005-7 CR - Ali, I., Faraz Ud Din, M., & Gu, Z.-G. (2022). MXenes Thin Films: From Fabrication to Their Applications. Molecules, 27(15), 4925. https://doi.org/10.3390/molecules27154925 CR - Biswas, A., Natu, V., & Puthirath, A. B. (2021). Thin-film growth of MAX phases as functional materials. Oxford Open Materials Science, 1(1), itab020. https://doi.org/10.1093/oxfmat/itab020 CR - Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018). Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Physical Review B, 97(11), 115439. https://doi.org/10.1103/PhysRevB.97.115439 CR - Chong, X., Jiang, Y., Zhou, R., & Feng, J. (2014). Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Adv., 4(85), 44959-44971. https://doi.org/10.1039/C4RA07543A CR - Khalid, M., Grace, A. N., Arulraj, A., & Numan, A. (Eds.). (2022). Fundamental aspects and perspectives of MXenes. Springer. CR - Gkountaras, A., Kim, Y., Coraux, J., Bouchiat, V., Lisi, S., Barsoum, M. W., & Ouisse, T. (2020). Mechanical Exfoliation of Select MAX Phases and Mo4Ce4Al7C3 Single Crystals to Produce MAXenes. Small, 16(4), 1905784. https://doi.org/10.1002/smll.201905784 CR - Gogotsi, Y., & Anasori, B. (2019). The Rise of MXenes. ACS Nano, 13(8), 8491-8494. https://doi.org/10.1021/acsnano.9b06394 CR - Ibrahim, I. A. M., Abdel-Azeim, S., El-Nahas, A. M., Kühn, O., Chung, C.-Y., El-Zatahry, A., & Shibl, M. F. (2022). In Silico Band-Gap Engineering of Cr2C MXenes as Efficient Photocatalysts for Water-Splitting Reactions. The Journal of Physical Chemistry C, 126(35), 14886-14896. https://doi.org/10.1021/acs.jpcc.2c03622 CR - Kanoun, M. B., Goumri-Said, S., & Abdullah, K. (2012). 8—Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases. İçinde I. M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases (pp. 177-196). Woodhead Publishing. https://doi.org/10.1533/9780857096012.177 CR - Kedambaimoole, V., Harsh, K., Rajanna, K., Sen, P., Nayak, M. M., & Kumar, S. (2022). MXene wearables: Properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 3(9), 3784-3808. https://doi.org/10.1039/D1MA01170G CR - Martins, V. L., Neves, H. R., Monje, I. E., Leite, M. M., Oliveira, P. F. M. D., Antoniassi, R. M., Chauque, S., Morais, W. G., Melo, E. C., Obana, T. T., Souza, B. L., & Torresi, R. M. (2020). An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020200796 CR - MAX Phases and MXenes Synthesis. (2022, Nisan 15). A.J. Drexel Nanomaterials Institute. https://nano.materials.drexel.edu/max-phases-and-mxenes-synthesis/ CR - Qin, R., Shan, G., Hu, M., & Huang, W. (2021). Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Materials Today Physics, 21, 100527. https://doi.org/10.1016/j.mtphys.2021.100527 CR - Salim, O., Mahmoud, K. A., Pant, K. K., & Joshi, R. K. (2019). Introduction to MXenes: Synthesis and characteristics. Materials Today Chemistry, 14, 100191. https://doi.org/10.1016/j.mtchem.2019.08.010 CR - Suzuki, Y., Hino, H., Hawai, T., Saito, K., Kotsugi, M., & Ono, K. (2020). Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Scientific Reports, 10(1), 21790. https://doi.org/10.1038/s41598-020-77474-4 CR - Völker, B., Stelzer, B., Mráz, S., Rueß, H., Sahu, R., Kirchlechner, C., Dehm, G., & Schneider, J. M. (2021). On the fracture behavior of Cr2AlC coatings. Materials & Design, 206, 109757. https://doi.org/10.1016/j.matdes.2021.109757 CR - Werner, P.-E. (1964). Trial-and-error computer methods for the indexing of unknown powder patterns. Zeitschrift für Kristallographie - Crystalline Materials, 120(1-6), 375-387. https://doi.org/10.1524/zkri.1964.120.16.375 CR - Xu, J., Peng, T., Qin, X., Zhang, Q., Liu, T., Dai, W., Chen, B., Yu, H., & Shi, S. (2021). Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 9(25), 14147-14171. https://doi.org/10.1039/D1TA03070A CR - Zhang, Z., Duan, X., Jia, D., Zhou, Y., & van der Zwaag, S. (2021). On the formation mechanisms and properties of MAX phases: A review. Journal of the European Ceramic Society, 41(7), 3851-3878. https://doi.org/10.1016/j.jeurceramsoc.2021.02.002 CR - Zhou, A., Liu, Y., Li, S., Wang, X., Ying, G., Xia, Q., & Zhang, P. (2021). From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 10(6), 1194-1242. https://doi.org/10.1007/s40145-021-0535-5 UR - https://dergipark.org.tr/tr/pub/itummej/issue//1475603 L1 - https://dergipark.org.tr/tr/download/article-file/3893865 ER -