TY - JOUR T1 - Eğitim Araştırmalarında Çok Düzeyli Meta-Analiz Modelleri: Örnek Uygulamalı Bir Rehber TT - Multilevel Meta-Analysis Models in Educational Research: A Practical Guide AU - Karaca, Dilek AU - Aydın, Burak AU - Atılgan, Hakan PY - 2024 DA - September Y2 - 2024 DO - 10.53444/deubefd.1476011 JF - Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi JO - DEU BEF Dergi PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 2602-2850 SP - 2502 EP - 2530 IS - 61 LA - tr AB - Meta-analiz belirli alanda yapılmış çalışmalardan sistematik şekilde elde edilen nicel verileri kullanarak o alanla ilgili genel durumu ortaya koymaya çalışan istatistiksel bir yöntemdir. Geleneksel meta-analiz yöntemleri, etki büyüklükleri arasında bağımlılık olmadığı varsayımına dayanmasına rağmen özellikle sosyal bilimlerde etki büyüklüğü bağımlılığına neden olabilecek çok sayıda durum söz konusudur. Araştırmacının elde ettiği etki büyüklüklerindeki bağımlılık veri setinde kümeli bir yapı oluşturur. Geleneksel meta-analiz uygulamalarındaki etki büyüklüğü bağımlılığı sorunu ile başa çıkmak ve kümeli veri yapısını dikkate almak için önerilen yöntemlerden biri çok düzeyli meta-analitik modellerin kullanılmasıdır. Çok düzeyli modeller diğer istatistiksel çerçevelerle birleştirilebilir ve kümeli veri yapılarının daha savunulabilir şekilde çözümlenebilmesini sağlayabilir. Bu sebeple çok düzeyli modellerin sosyal bilimlerde kullanım sıklığı her geçen gün artmaktadır. Bu çalışmanın amacı örnek bir veri seti üzerinden çok düzeyli meta-analitik modellerin nasıl uygulanabileceğini göstermektir. R yazılımı kullanılarak gerçekleştirilen analizlerde metafor paketinin rma.mv fonksiyonu kullanılmıştır. Bu uygulama okuyuculara veri dosyasının düzenlenmesi, R yazılımının hazırlanması, genel etkinin hesaplanması, çalışma içi ve çalışmalar arası varyans heterojenliğinin incelenmesi ile kategorik ve sürekli değişkenlere ait moderatör analizlerinin nasıl yapılacağını adım adım anlatan bir kılavuz niteliği taşımaktadır. Çalışmada kullanılan veri dosyası ve R betiği okuyucuların kullanımı için ekler kısmında sunulmuştur. KW - Meta-analiz KW - çok düzeyli meta-analiz KW - çok düzeyli modeller KW - metafor KW - R yazılımı N2 - Meta-analysis is a statistical method that tries to reveal the general situation about that field by using quantitative data obtained systematically from studies conducted in a certain field. However, traditional meta-analysis methods assume effect size independence, which can be a significant and misleading limitation in social sciences research. The dependence in the effect sizes obtained by the researcher creates a clustered data structure, a problem that needs attention. One of the methods to address this problem is the use of multilevel meta-analytic models. Multilevel models can be combined with other statistical frameworks, providing a more defensible analysis of clustered data structures. For this reason, the frequency of multilevel models in social sciences is steadily increasing. This study demonstrates how multilevel meta-analytic models can be applied to a sample data set. In the R environment, the rma.mv function of the metafor package was utilized for the analyses. This application is a step-by-step guide for readers on organizing the data file, preparing the R software, calculating the overall effect, examining the heterogeneity of variance within and between studies, and conducting moderator analyses with categorical and continuous variables. The data file and R script used in the study are shared as supplementary material for the readers. CR - APA. (2008). Reporting standards for research in psychology: Why do we need them? What might they be? American Psychologist, 63(9), 839-851. https://doi.org/10.1037/0003-066X.63.9.839 CR - Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154-174. https://doi.org/10.20982/tqmp.12.3.p154 CR - Becker, B. J. (2000). Multivariate meta-analysis. Handbook of applied multivariate statistics and mathematical modeling, 499-525. https://doi.org/10.1016/B978-012691360-6/50018-5 CR - Begg, C. B., & Mazumdar, M. (1994). Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics, 50(4), 1088–1101. https://doi.org/10.2307/2533446 CR - Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. http://doi.org/10.1002/9780470743386 CR - Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229. https://doi.org/10.1037/a0032968 CR - Cheung, M. W. L. (2015). Meta-Analysis: A Structural Equation Modeling Approach. John Wiley & Sons. https://doi.org/10.1080/10705510802561295 CR - Cheung, M. W. L. (2019). A Guide to Conducting a Meta-Analysis with Non-Independent Effect Sizes. Neuropsychology Review, 29(4), 387-396. https://doi.org/10.1007/s11065-019-09415-6 CR - Cheung, S. F., & Chan, D. K. S. (2004). Dependent Effect Sizes in Meta-Analysis: Incorporating the Degree of Interdependence. Journal of Applied Psychology, 89(5), 780-791. https://doi.org/10.1037/0021-9010.89.5.780 CR - Cheung, S. F., & Chan, D. K. S. (2014). Meta-analyzing dependent correlations: An SPSS macro and an R script. Behavior Research Methods, 46(2), 331-345. https://doi.org/10.3758/s13428-013-0386-2 CR - Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. edition). Lawrence Erlbaum Associates, Publishers. https://doi.org/10.4324/9780203771587 CR - Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2019). The handbook of research synthesis and meta-analysis (3.edition). Russell Sage Foundation. CR - Duval, S., & Tweedie, R. (2000). Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463. https://doi.org/10.1111/j.0006-341X.2000.00455.x CR - Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. bmj, 315(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629 CR - Fisher, R. A. (1933). Statistical Methods for Research Workers. Nature, 131(3307), Article 3307. https://doi.org/10.1038/131383b0 CR - Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational researcher, 5(10), 3-8. https://doi.org/10.3102/0013189X005010003 CR - Gooty, J., Banks, G. C., Loignon, A. C., Tonidandel, S., & Williams, C. E. (2021). Meta-Analyses as a Multi-Level Model. Organizational Research Methods, 24(2), 389-411. https://doi.org/10.1177/1094428119857471 CR - Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2021). Doing Meta-Analysis with R: A Hands-On Guide (1.st edition). Chapman and Hall/CRC. https://doi.org/10.1201/9781003107347 CR - Hedges, L. V. (1982). Fitting Categorical Models to Effect Sizes from a Series of Experiments. Journal of Educational Statistics, 7(2), 119-137. https://doi.org/10.3102/10769986007002119 CR - Hedges, L. V., & Olkin, I. (1988). Statistical Methods for Meta-Analysis. Journal of Educational Statistics, 13(1), 75. https://doi.org/10.2307/1164953 CR - Hedges, L. V., & Pigott, T. D. (2001). The power of statistical tests in meta-analysis. Psychological Methods, 6(3), 203-217. https://doi.org/10.1037/1082-989X.6.3.203 CR - Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine, 21(11), 1539-1558. https://doi.org/10.1002/sim.1186 CR - Hox, J. J., & De Leeuw, E. D. (2003). Multilevel models for meta-analysis. In Multilevel modeling (pp. 87-104). Psychology Press. CR - Hox, J. J., Moerbeek, M., & Schoot, R. van de. (2010). Multilevel Analysis: Techniques and Applications, Second Edition. Routledge. https://doi.org/10.4324/9780203852279 CR - Hunter, J. E., & Schmidt, F. L. (2004). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings, Second Edition. SAGE. CR - Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61-76. https://doi.org/10.1002/jrsm.35 CR - Lipsey, M. W., & Wilson, D. B. (2001). Practical Meta-Analysis. SAGE Publications, Inc. CR - Marín-Martínez, F., & Sánchez-Meca, J. (1999). Averaging Dependent Effect Sizes in Meta-Analysis: A Cautionary Note about Procedures. The Spanish Journal of Psychology, 2, 32-38. https://doi.org/10.1017/S1138741600005436 CR - Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O’Mara, A. (2009). Gender Effects in the Peer Reviews of Grant Proposals: A Comprehensive Meta-Analysis Comparing Traditional and Multilevel Approaches. Review of Educational Research, 79(3), 1290-1326. https://doi.org/10.3102/0034654309334143 CR - Midway, S. (2022). Data analysis in R. Retrieved April, 8, 2023. https://bookdown.org/steve_midway/DAR/ CR - Moher, D., Cook, D. J., Eastwood, S., Olkin, I., Rennie, D., & Stroup, D. F. (1999). Improving the quality of reports of meta-analyses of randomised controlled trials: The QUOROM statement. The Lancet, 354(9193), 1896-1900. https://doi.org/10.1016/S0140-6736(99)04149-5 CR - Morris, S. B. (2008). Estimating Effect Sizes From Pretest-Posttest-Control Group Designs. Organizational Research Methods, 11(2), 364-386. https://doi.org/10.1177/1094428106291059 CR - Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Journal of clinical epidemiology, 134, 103-112. https://doi.org/10.1136/bmj.n71 CR - Pastor, D. A., & Lazowski, R. A. (2018). On the Multilevel Nature of Meta-Analysis: A Tutorial, Comparison of Software Programs, and Discussion of Analytic Choices. Multivariate Behavioral Research, 53(1), 74-89. https://doi.org/10.1080/00273171.2017.1365684 CR - Pearson. (1904). Report On Certain Enteric Fever Inoculation Statistics. 1243-1246. CR - Pustejovsky, J. (2023). clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections (R package version 0.5.10). https://cran.r-project.org/web/packages/clubSandwich/index.html CR - Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological bulletin, 86(3), 638. https://doi.org/10.1037/0033-2909.86.3.638 CR - Rosenthal, R. (1991). Meta-Analytic Procedures for Social Research. SAGE Publications, Inc. https://doi.org/10.4135/9781412984997 CR - Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies with multiple effect sizes. Psychological Bulletin, 99(3), 400-406. https://doi.org/10.1037/0033-2909.99.3.400 CR - RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ CR - Scammacca, N., Roberts, G., & Stuebing, K. K. (2014). Meta-Analysis With Complex Research Designs: Dealing With Dependence From Multiple Measures and Multiple Group Comparisons. Review of Educational Research, 84(3), 328-364. https://doi.org/10.3102/0034654313500826 CR - Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., Moher, D., Becker, B. J., Sipe, T. A., & Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Jama, 283(15), 2008-2012. https://doi.org/10.1001/jama.283.15.2008 CR - Şen, S., & Akbaş, N. (2016). Çok Düzeyli Meta-Analiz Yöntemleri Üzerine Bir Çalışma. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 7(1). https://doi.org/10.21031/epod.29995 CR - Şen, S., & Yıldırım, İ. (2020). CMA ile meta-analiz uygulamaları. Ankara: ANI Yayıncılık. CR - Van Den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013). Three-level meta-analysis of dependent effect sizes. Behavior Research Methods, 45(2), 576-594. https://doi.org/10.3758/s13428-012-0261-6 CR - Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/10.18637/jss.v036.i03 UR - https://doi.org/10.53444/deubefd.1476011 L1 - https://dergipark.org.tr/tr/download/article-file/3895609 ER -