TY - JOUR T1 - Hekzagonal bor nitrür destekli katalizörler varlığında dimetil eter üretimi TT - Dimethyl ether production in the presence of hexagonal boron nitride supported catalysts AU - Pekmezci, Birce PY - 2024 DA - September Y2 - 2024 DO - 10.30728/boron.1483085 JF - Journal of Boron PB - TENMAK Bor Araştırma Enstitüsü WT - DergiPark SN - 2149-9020 SP - 120 EP - 128 VL - 9 IS - 3 LA - tr AB - Hekzagonal bor nitrür (hBN), yüksek ısıl iletkenliği, elektriksel yalıtkanlığı, kimyasal ve mekanik dayanıklılığı gibi özellikleriyle son zamanlarda dikkat çeken bir malzemedir. Ayrıca, mezogözenekli yapısı sayesinde alternatif yakıt üretimi reaksiyonlarında destek malzemesi olarak kullanıma da uygundur. Çalışmanın amacı, hBN’nin alternatif yakıt üretimi reaksiyonunda katalizör destek malzemesi olarak kullanımının araştırılması ve metanolün (MeOH) dehidrasyonu ile dimetil eter (DME) üretimi çalışmalarında katalitik aktivite testlerinin gerçekleştirilmesidir. Bu amaçla, hBN yapısına farklı oranlarda (kütlece %1, 4 ve 8) silikotungstik asit (STA) emdirme yöntemiyle yüklenmiş ve malzemenin yüzey asitliği artırılmıştır. Sentezlenen katalizörler X-ışını difraktometresi (XRD), N2 adsorpsiyon/desorpsiyon (BET), endüktif olarak eşleştirilmiş plazma-optik emisyon spektrometrisi (ICP-OES), taramalı elektron mikroskobu-enerji dispersiv spektrum (SEMEDS) ve piridin-adsorplanmış numunelerin difüz yansıma kızılötesi Fourier dönüşüm spektroskopisi (DRIFTS) teknikleri ile karakterize edilmiştir. Katalizörlerin aktivite testleri ise farklı reaksiyon sıcaklıklarında (200-300 °C) ve farklı kütlece saatlik boşluk hızlarında (WHSV, 0,25-0,5 ve 1,0 saat−1) gerçekleştirilmiştir. Böylece reaksiyon sıcaklığının ve akış hızının DME seçiciliğine ve MeOH dönüşümüne etkisi incelenmiştir. Çalışma sonucunda 8STA@hBN katalizörü ile 275°C’de %100 DME seçiciliği elde edilmiştir. Katalizörlerin yapısındaki STA miktarının artmasıyla Bronsted asit siteleri arttığından hBN destekli katalizörler metanolün dehidrasyon reaksiyonunda yüksek aktivite göstermiştir. Ayrıca yüksek reaksiyon sıcaklığı da MeOH dönüşümü ile DME seçiciliğini olumlu etkilemiştir. Çalışmadan elde edilen sonuçlar, STA içerikli hBN katalizörlerinin, alternatif yakıt kaynağı olan dimetil eterin üretimi için uygun bir seçenek olabileceğini göstermiştir. KW - Alternatif yakıt KW - Dimetil eter KW - Hekzagonal bor nitrür KW - Metanol N2 - Hexagonal boron nitride (hBN) has recently attracted attention due to its properties such as high thermal conductivity, electrical insulation, and chemical and mechanical durability. Moreover, thanks to its mesoporous structure, it is also suitable for use as a support material in alternative fuel production reactions. The aim of the study is to investigate the use of Hbn as a catalyst support material in the alternative fuel production reaction and to perform catalytic activity tests in dimethyl ether (DME) production studies by dehydration of methanol (MeOH). For this purpose, silicotungstic acid (STA) was loaded into the structure of hBN at different rates (1, 4, and 8% by mass) by the impregnation method, and the surface acidity of the material was increased. The synthesised catalysts were characterised by X-ray diffraction (XRD), N2 adsorption/desorption (BET), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) techniques of pyridine-adsorbed samples. Activity tests of the catalysts were carried out at different reaction temperatures (200-300 °C) and different weight hourly space velocity (WHSV, 0.25-0.5 and 1.0 h−1). Thus, the effect of reaction temperature and flow rate on DME selectivity and MeOH conversion was examined. As a result of the study, 100% DME selectivity was achieved with the 8STA@hBN catalyst at 275°C. hBN supported catalysts showed high activity in the dehydration reaction of methanol, as the number of Bronsted acid sites increased with the increase in the amount of STA in the structure of the catalysts. In addition, high reaction temperature positively affected MeOH conversion and DME selectivity. The results obtained from the study showed that STA-containing hBN catalysts may be a suitable option to produce dimethyl ether, an alternative fuel source. CR - [1] Zielinska, B., Sagebiel, J., McDonald, J. D., Whitney, K., & Lawson, D. R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline fueled vehicles. Journal of the Air & Waste Management Association, 54(9), 1138-1150. https://doi. org/10.1080/10473289.2004.10470973 CR - [2] Kritsanaviparkporn, E., Baena-Moreno, F. M., & Reina, T. R. (2021). Catalytic converters for vehicle exhaust: Fundamental aspects and technology overview for newcomers to the field. Chemistry, 3(2), 630-646. https://doi.org/10.3390/chemistry3020044 CR - [3] Bikis, A., & Pandey, D. (2022). Air quality at public transportation stations/stops: contribution of light rail transit to reduce air pollution. Aerosol Science and Engineering, 6(1), 1-16. https://doi.org/10.1007/ s41810-021-00119-0 CR - [4] Dogan, M. Y., Tasdemir, H. M., Arbag, H., Yasyerli, N., & Yasyerli, S. (2024). H2 production via H2S decomposition over activated carbon supported Fe-and W367 catalysts. International Journal of Hydrogen Energy, 75, 483-495. https://doi.org/10.1016/j.ijhydene.2024.02.316 CR - [5] Dogan, M. Y., Arbag, H., Tasdemir, H. M., Yasyerli, N., & Yasyerli, S. (2023). Effect of ceria content in Ni-Ce- Al catalyst on catalytic performance and carbon/coke formation in dry reforming of CH4. International Journal of Hydrogen Energy, 48(60), 23013-23030. https://doi. org/10.1016/j.ijhydene.2023.04.011 CR - [6] Ozcan, M. C., Karaman, B. P., Oktar, N., &Dogu, T. (2022). Dimethyl ether from syngas and effect of CO2 sorption on product distribution over a new bifunctional catalyst pair containing STA@ SBA-15. Fuel, 330(15), 125607. https://doi.org/10.1016/j.fuel.2022.125607 CR - [7] Tokay, K. C., Dogu, T., & Dogu, G. (2012). Dimethyl ether synthesis over alumina based catalysts. Chemical Engineering Journal, 184, 278-285. https://doi. org/10.1016/j.cej.2011.12.034 CR - [8] Ciftci, A., Varisli, D., Tokay, K. C., Sezgi, N. A., & Dogu, T. (2012). Dimethyl ether, diethyl ether & ethylene from alcohols over tungstophosphoric acid based mesoporous catalysts. Chemical Engineering Journal, 207, 85-93. https://doi.org/10.1016/j.cej.2012.04.016 CR - [9] Pekmezci Karaman, B., Oktar, N., Doğu, G., & Doğu, T. (2020). Bifunctional silicotungstic acid and tungstophosphoric acid impregnated Cu-Zn-Al & Cu- Zn-Zr catalysts for dimethyl ether synthesis from syngas. Catalysis Letters, 150, 2744-2761. https://doi. org/10.1007/s10562-020-03171-6 CR - [10] Arya, P. K., Tupkari, S., Satish, K., Thakre, G. D., & Shukla, B. M. (2016). DME blended LPG as a cooking fuel option for Indian household: A review. Renewable and Sustainable Energy Reviews, 53, 1591-1601. https://doi.org/10.1016/j.rser.2015.09.007 CR - [11] Dadgar, F., Myrstad, R., Pfeifer, P., Holmen, A., & Venvik, H. J. (2016). Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction. Catalysis Today, 270, 76-84. https://doi.org/10.1016/j.cattod.2015.09.024 CR - [12] Hosseininejad, S., Afacan, A., & Hayes, R. E. (2012). Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chemical Engineering Research and Design, 90(6), 825-833. https://doi.org/10.1016/j. cherd.2011.10.007 CR - [13] Yang, Q., Zhang, H., Kong, M., Bao, X., Fei, J., & Zheng, X. (2013). Hierarchical mesoporous ZSM-5 for the dehydration of methanol to dimethyl ether. Chinese Journal of Catalysis, 34(8), 1576-1582. https://doi. org/10.1016/S1872-2067(12)60621-4 CR - [14] Palomo, J., Rodríguez-Cano, M. A., Berruezo-García, J., Rodríguez-Mirasol, J., & Cordero, T. (2022). Efficient methanol dehydration to DME and light hydrocarbons by submicrometric ZrO2-ZSM-5 fibrillar catalysts with a shell-like structure. Fuel, 315, 123283. https://doi. org/10.1016/j.fuel.2022.123283 CR - [15] Celik, G., Arinan, A., Bayat, A., Ozbelge, H. O., Dogu, T., & Varisli, D. (2013). Performance of Silicotungstic Acid Incorporated Mesoporous Catalyst in Direct Synthesis of Dimethyl Ether from Syngas in the Presence and Absence of CO2. Topics in Catalysis, 56, 1764-1774. https://doi.org/10.1007/s11244-013-0112-4 CR - [16] Bateni, H., & Able, C. (2019). Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A Review. Catalysis in Industry, 11, 7-33. https://doi.org/10.1134/S2070050419010045 CR - [17] Degirmencioglu, P., & Arbag, H. (2023). Acid treatment to improve total light olefins selectivity of HZSM-5 catalyst in methanol to olefins (MTO) reaction. Arabian Journal for Science and Engineering, 48(12), 16123- 16136. https://doi.org/10.1007/s13369-023-08067-2 CR - [18] Bayat, A., & Dogu, T. (2016). Optimization of CO2/CO ratio and temperature for dimethyl ether synthesis from syngas over a new bifunctional catalyst pair containing heteropolyacid impregnated mesoporous alumina. Industrial & Engineering Chemistry Research, 55(44), 11431-11439. https://doi.org/10.1021/acs.iecr.6b03001 CR - [19] Karaman, B. P., Oktar, N., Doğu, G., & Dogu, T. (2022). Heteropolyacid incorporated bifunctional core-shell catalysts for dimethyl ether synthesis from carbon dioxide/syngas. Catalysts, 12(10), 1102. https://doi. org/10.3390/catal12101102 CR - [20] Karaman, B. P., & Oktar, N. (2020). Tungstophosphoric acid incorporated hierarchical HZSM-5 catalysts for direct synthesis of dimethyl ether. International Journal of Hydrogen Energy, 45(60), 34793-34804. https://doi. org/10.1016/j.ijhydene.2020.07.044 CR - [21] Postole, G., Caldararu, M., Ionescu, N. I., Bonnetot, B., Auroux, A., & Guimon, C. (2005). Boron nitride: A high potential support for combustion catalysts. Thermochimica Acta, 434(1-2), 150-157. https://doi. org/10.1016/j.tca.2005.01.007 CR - [22] Lin, C., Wu, J. C. S., Pan, J., & Yeh, C., (2002). Characterization of boron-nitride-supported PT catalysts for the deep oxidation of benzene. Journal of Catalysis, 210(1), 39-45. https://doi.org/10.1006/ jcat.2002.3638 CR - [23] Özkurt, J., & Ay, N. (2023). Lüminesans özellik gösteren hekzagonal bor nitrür üretiminin araştırılması. Journal of Boron, 8(special issue), 12-18. https://doi. org/10.30728/boron.1266900 CR - [24] Elmusa, B., & Ay, N. (2022). Lityum iyon pilleri ayırıcılarında hekzagonal bor nitrür kullanımı ve gelişmeler. Journal of Boron, 7(1), 440-452. https://doi. org/10.30728/boron.1008704 CR - [25] Guvenc, C., Alan, E., Degirmencioglu, P., Ozcan, M. C., Karaman, B. P., & Oktar, N. (2023). Catalytic upgrading of bio-oil model mixtures in the presence of microporous HZSM-5 and γ-Al2O3 based Ni, Ta and Zr catalysts. Fuel, 350, 128870. https://doi.org/10.1016/j. fuel.2023.128870 CR - [26] Ibrahim, S. A., Ekinci, E. K., Karaman, B. P., & Oktar, N. (2021). Coke-resistance enhancement of mesoporous γ-Al2O3 and MgO-supported Ni-based catalysts for sustainable hydrogen generation via steam reforming of acetic acid. International Journal of Hydrogen Energy, 46(77), 38281-38298. https://doi.org/10.1016/j. ijhydene.2021.09.084 CR - [27] Zhu, L., Lian, G., Tan, M., Wang, Q., Zhao, X., Cui, D., & Tao, X. (2008). Reaction of hexagonal boron nitride nano-crystals under mild hydrothermal conditions. Zeitschrift für Naturforschung B, 63(6), 742-746. https:// doi.org/10.1515/znb-2008-0623 CR - [28] Varışlı, D., Tokay, K. C., Çiftçi, A., Doğu, T., & Doğu, G. (2009). Methanol dehydration reaction to produce clean diesel alternative dimethylether over mesoporous aluminosilicate-based catalysts. Turkish Journal of Chemistry, 33(3), 355-366. https://doi.org/10.3906/ kim-0809-31 CR - [29] Yaripour, F., Baghaei, F., Schmidt, I. B., & Perregaard, J. (2005). Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts. Catalysis Communications, 6(2), 147-152. https://doi. org/10.1016/j.catcom.2004.11.012 CR - [30] Fu, Y., Hong, T., Chen, J., Auroux, A., & Shen, J. (2005). Surface acidity and the dehydration of methanol to dimethyl ether. Thermochimica Acta, 434(1-2), 22-26. https://doi.org/10.1016/j.tca.2004.12.02 UR - https://doi.org/10.30728/boron.1483085 L1 - http://dergipark.org.tr/tr/download/article-file/3926002 ER -