TY - JOUR T1 - Gender-specific effects of alternate-day fasting on body weight, oxidative stress, and metabolic health in middle-aged rats TT - Orta yaş sıçanlarda gün aşırı açlık protokolünün vücut ağırlığı, oksidatif stres ve metabolik sağlık üzerine cinsiyete özgü etkileri AU - Gündoğdu, Gülşah AU - Kılıç Erkek, Özgen PY - 2024 DA - October Y2 - 2024 DO - 10.31362/patd.1487708 JF - Pamukkale Medical Journal JO - Pam Tıp Derg PB - Pamukkale Üniversitesi WT - DergiPark SN - 1308-0865 SP - 690 EP - 701 VL - 17 IS - 4 LA - en AB - Purpose: The purpose of this study was to assess the effect of alternate-day fasting (ADF) concerning sex aswell as its function in systemic and tissue-level oxidative stress alterations associated with aging.Materials and methods: Forty-two female (n=21) and male (n=21) Wistar rats (aged 16 months) were separatedinto six groups (n=7 each): Group-1 (control-male), Group-2 (1-month, ADF-male), Group-3 (2-month, ADFmale),Group-4 (control-female), Group-5 (1-month, ADF-female), and Group-6 (2-month, ADF-female). TheADF protocol was applied every other day for 24-h of fasting (three days/week). Serum samples were analyzedvia ELISA to measure total oxidant-antioxidant status (TOS-TAS), and the oxidative stress index (OSI) wascalculated.Results: 2-months of ADF treatment reduced body weight (BW) compared compliance control groups (p<0.001).All groups' cumulative food intake and retroperitoneal fat weight decreased with ADF (p<0.05). Both 1-monthand 2-month ADF interventions had positive effects on reducing TOS and OSI in both liver and serum, with asignificant decrease observed in both groups compared to their respective controls (p<0.001). The liver TASsignificantly increased in female rats (p<0.05), but this increase did not reach a significant level in male rats. Thedifference in the serum TAS between the groups was not significant.Conclusions: This study evaluated the effects of ADF on BW, food consumption, and oxidative stressparameters in male and female rats. The findings highlight ADF's potential benefits in weight managementand reducing oxidative stress. This study represents an important step in understanding the effects of ADF onmetabolic health and in identifying potential clinical applications. KW - Aging KW - alternate-day fasting KW - food intake KW - gender KW - oxidative stress N2 - Amaç: Bu çalışmada, gün aşırı açlık protokolünün (ADF) cinsiyete özgü etkisinin ve yaşlanma ile ilişkili oksidatifstres değişimlerindeki işlevlerinin değerlendirilmesi amaçlandı.Gereç ve yöntem: Kırk iki dişi (n=21) ve erkek (n=21) 16 aylık Wistar sıçanları altı gruba (n=7) ayrıldı: Grup-1(kontrol-erkek), Grup-2 (1 ay, ADF-erkek), Grup-3 (2 ay, ADF-erkek), Grup-4 (kontrol-dişi), Grup-5 (1 ay, ADFdişi)ve Grup-6 (2 ay, ADF-dişi). ADF protokolü günaşırı 24 saatlik oruç tutma şeklinde uygulandı (haftada üçgün). Serum örnekleri, ELISA yöntemiyle toplam oksidan-antioksidan seviyelerini (TOS-TAS) ölçmek için alındıve oksidatif stres indeksi (OSI) hesaplandı.Bulgular: İki aylık-ADF tedavisinin kümültatif kontrol gruplarıyla karşılaştırıldığında vücut ağırlığında (VA)anlamlı azalma tespit edildi (p<0,001). Tüm gruplarda kümülatif gıda alımının ve retroperitoneal yağ ağırlığınınADF ile azaldığı görüldü (p<0,05). Hem 1 aylık hem de 2 aylık ADF uygulanması karaciğer ve serumda TOSseviyesi ve OSI'yi azaltmada olumlu etkiler gösterdi ve her iki grup da kendi kontrollerine göre anlamlı birazalma gözlemlendi (p<0,001). Karaciğer TAS seviyesi dişi sıçanlarda anlamlı olarak arttı (p<0,05), ancakerkek sıçanlarda bu artış anlamlı bir seviyeye ulaşmadı. Gruplar arasındaki serum TAS seviyesinde anlamlı farksaptanmadı.Sonuç: Bu çalışma, erkek ve dişi sıçanlarda ADF'nin VA, gıda tüketimi ve oksidatif stres parametreleriüzerindeki etkilerini değerlendirdi. Bulgular, ADF'nin kilo yönetimi ve oksidatif stresi azaltmada potansiyelfaydalarını vurgulamaktadır. Sonuç olarak, ADF'nin metabolik sağlık üzerindeki etkilerini anlamada ve olasıklinik uygulamaları belirlemede önemli bir adımı temsil etmektedir. CR - 1. López Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-1217. https://doi.org/10.1016%2Fj.cell.2013.05.039 CR - 2. Çakatay U, Aydin S, Yanar K, Uzun H. Gender-dependent variations in systemic biomarkers of oxidative protein, DNA, and lipid damage in aged rats. Aging Male 2010;13:51-58. https://doi.org/10.3109/13685530903236470 CR - 3. Maldonado E, Morales Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants 2023;12:651. https://doi.org/10.3390/antiox12030651 CR - 4. Sharifi Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiology 2020;11:694. https://doi.org/10.3389/fphys.2020.00694 CR - 5. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909-1911. https://doi.org/10.1126/science.1106653 CR - 6. Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biology 2021;9:628157. https://doi.org/10.3389/fcell.2021.628157 CR - 7. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 2004;287:1244-1249. https://doi.org/10.1152/ajpregu.00226.2004 CR - 8. Luceri C, Bigagli E, Femia AP, Caderni G, Giovannelli L, Lodovici M. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicology Reports 2018;5:141-145. https://doi.org/10.1016/j.toxrep.2017.12.017 CR - 9. Lebel M, de Souza Pinto NC, Bohr VA. Metabolism, genomics, and DNA repair in the mouse aging liver. Current gerontology and geriatrics research 2011;2011:859415. https://doi.org/10.1155%2F2011%2F859415 CR - 10. Soares NL, Dorand VAM, Cavalcante HC, et al. Does intermittent fasting associated with aerobic training influence parameters related to the gut-brain axis of Wistar rats? Journal of Affective Disorders 2021;293:176-185. https://doi.org/10.1016/j.jad.2021.06.028 CR - 11. Badreh F, Joukar S, Badavi M, Rashno M, Dehesh T. The effects of age and fasting models on blood pressure, insulin/glucose profile, and expression of longevity proteins in male rats. Rejuvenation Research 2020;23:224-236. https://doi.org/10.1089/rej.2019.2205 CR - 12. Carvajal V, Marín A, Gihardo D, Maluenda F, Carrasco F, Chamorro R. Intermittent fasting and human metabolic health. Rev Med Chile 2023;151:81-100. https://doi.org/10.4067/s0034-98872023000100081 CR - 13. Gabel K, Hoddy KK, Haggerty N, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutrition and Healthy Aging 2018;4:345-353. https://doi.org/10.3233/nha-170036 CR - 14. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Research Reviews 2017;39:46-58. https://doi.org/10.1016/j.arr.2016.10.005 CR - 15. Harris L, Hamilton S, Azevedo LB, et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Evidence Synthesis 2018;16:507-547. https://doi.org/10.11124/jbisrir-2016-003248 CR - 16. Park J, Seo YG, Paek YJ, Song HJ, Park KH, Noh HM. Effect of alternate-day fasting on obesity and cardiometabolic risk: a systematic review and meta-analysis. Metabolism 2020;111:154336. https://doi.org/10.1016/j.metabol.2020.154336 CR - 17. Moon S, Kang J, Kim SH, et al. Beneficial effects of time-restricted eating on metabolic diseases: a systemic review and meta-analysis. Nutrients 2020;12:1267. https://doi.org/10.3390/nu12051267 CR - 18. Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews 2015;73:661-674. https://doi.org/10.1093/nutrit/nuv041 CR - 19. Lee JH, Verma N, Thakkar N, Yeung C, Sung HK. Intermittent fasting: physiological implications on outcomes in mice and men. Physiology 2020;35:185-195. https://doi.org/10.1152/physiol.00030.2019 CR - 20. Catterson JH, Khericha M, Dyson MC, et al. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Current Biology 2018;28:1714-1724. https://doi.org/10.1016/j.cub.2018.04.015 CR - 21. Vassalle C, Novembrino C, Maffei S, et al. Determinants of oxidative stress related to gender: relevance of age and smoking habit. Clin Chem Lab Med 2011;49:1509-1513. https://doi.org/10.1515/CCLM.2011.622 CR - 22. Takahashi M, Miyashita M, Park JH, et al. The association between physical activity and sex-specific oxidative stress in older adults. J Sports Sci Med 2013;12:571-578. 23. Bilibio BLE, Dos Reis WR, Compagnon L, et al. Effects of alternate-day fasting and time-restricted feeding in obese middle-aged female rats. Nutrition 2023;116:112198. https://doi.org/10.1016/j.nut.2023.112198 CR - 24. Munhoz AC, Vilas Boas EA, Panveloski Costa AC, et al. Intermittent fasting for twelve weeks leads to increases in fat mass and hyperinsulinemia in young female Wistar rats. Nutrients 2020;12:1029. https://doi.org/10.3390/nu12041029 CR - 25. Olsen MK, Choi MH, Kulseng B, Zhao CM, Chen D. Time-restricted feeding on weekdays restricts weight gain: a study using rat models of high-fat diet-induced obesity. Physiology Behavior 2017;173:298-304. https://doi.org/10.1016/j.physbeh.2017.02.032 CR - 26. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 2005;38:1103-1011. https://doi.org/10.1016/j.clinbiochem.2005.08.008 CR - 27. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 2004;37:277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015 CR - 28. Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. PNAS 2014;111:16647-16653. https://doi.org/10.1073/pnas.1413965111 CR - 29. Baumeier C, Kaiser D, Heeren J, et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2015;1851:566-576. https://doi.org/10.1016/j.bbalip.2015.01.013 CR - 30. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high‐fat diet resets circadian metabolism and prevents obesity. FASEB J 2012;26:3493-3502. https://doi.org/10.1096/fj.12-208868 CR - 31. Cottone P, Sabino V, Steardo L, Zorrilla EP. Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology 2009;34:38-49. https://doi.org/10.1016/j.psyneuen.2008.08.010 CR - 32. Wang L, Suyama S, Lee SA, et al. Fasting inhibits excitatory synaptic input on paraventricular oxytocin neurons via neuropeptide Y and Y1 receptor, inducing rebound hyperphagia, and weight gain. Front Nutr 2022;9:994827. https://doi.org/10.3389/fnut.2022.994827 CR - 33. Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. The Journal of Nutritional Biochemistry 2017;40:14-22. https://doi.org/10.1016/j.jnutbio.2016.10.003 CR - 34. Carpentier AC. 100th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021;320:653-670. https://doi.org/10.1152/ajpendo.00620.2020 CR - 35. Stockman MC, Thomas D, Burke J, Apovian CM. Intermittent fasting: is the wait worth the weight? Curr Obes Rep 2018;7:172-185. https://doi.org/10.1007/s13679-018-0308-9 CR - 36. Varady KA, Hudak CS, Hellerstein MK. Modified alternate-day fasting and cardioprotection: relation to adipose tissue dynamics and dietary fat intake. Metabolism 2009;58:803-811. https://doi.org/10.1016/j.metabol.2009.01.018 CR - 37. Kayali R, Çakatay U, Tekeli F. Male rats exhibit higher oxidative protein damage than females of the same chronological age. Mechanisms of Ageing and Development 2007;128:365-369. https://doi.org/10.1016/j.mad.2007.03.003 CR - 38. Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. Journal of Proteomics 2013;92:132-159. https://doi.org/10.1016/j.jprot.2013.01.004 CR - 39. Pandey KB, Mehdi MM, Maurya PK, Rizvi SI. Plasma protein oxidation and its correlation with antioxidant potential during human aging. Disease Markers 2010;29:31-36. https://doi.org/10.3233/dma-2010-0723 CR - 40. Marczuk Krynickaabcdef D, Hryniewieckibe T, Piątekbf J, Paluszak J. The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Med Sci Monit 2003;9:131-135. CR - 41. Sorensen M, Sanz A, Gomez J, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radical Research 2006;40:339-347. https://doi.org/10.1080/10715760500250182 CR - 42. Bhutani S, Klempel MC, Berger RA, Varady KA. Improvements in coronary heart disease risk indicators by alternate‐day fasting involve adipose tissue modulations. Obesity 2010;18:2152-2159. https://doi.org/10.1038/oby.2010.54 CR - 43. Descamps O, Riondel J, Ducros V, Roussel AM. Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting. Mechanisms of Ageing and Development 2005;126:1185-1191. https://doi.org/10.1016/j.mad.2005.06.007 CR - 44. Le Bourg E. Hormesis, aging and longevity. Biochimica et Biophysica Acta (BBA)-General Subjects 2009;1790:1030-1039. https://doi.org/10.1016/j.bbagen.2009.01.004 UR - https://doi.org/10.31362/patd.1487708 L1 - https://dergipark.org.tr/tr/download/article-file/3946030 ER -