TY - JOUR T1 - PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ TT - PYTHAGOREAN FUZZY-BASED CRITIC-MARCOS METHOD FOR AUTONOMOUS FORKLIFT SELECTION AU - Çaloğlu Büyükselçuk, Elif PY - 2024 DA - December Y2 - 2024 DO - 10.31796/ogummf.1496123 JF - Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi JO - ESOGÜ Müh Mim Fak Derg PB - Eskişehir Osmangazi Üniversitesi WT - DergiPark SN - 2630-5712 SP - 1485 EP - 1499 VL - 32 IS - 3 LA - tr AB - Üretim ve depolama işletmelerinde forkliftler işletmenin verimliliğini arttırmak amacıyla yaygın olarak kullanılmaktadır. Özellikle son yıllarda teknolojide yaşanan gelişmeler ve Endüstri 4.0 uygulamaları ile otonom forkliftler modern işletmelerde klasik forkliftlerin yerini almaktadır. Çevre dostu ve 24 saat çalışabilen bu araçlar ile işletme bünyesinde verim artırılırken aynı zamanda insan hatasından kaynaklı kazalar da önlenebilmektedir. Bu çalışma, modern işletmelere otonom forklift belirleme sürecinde destek olmak üzere geliştirilmiştir. Bu araçların seçiminde hangi kriterlerin dikkate alınması gerektiği literatür taraması sonucunda belirlenmiştir. Bu süreçte yaşanabilecek belirsizlik ve sübjektifliğin etkilerini en aza indirebilmek amacıyla Pisagor bulanık sayılardan yararlanarak problem çözülmüştür. CRITIC (Criteria Importance Through Intercriteria Correlation) yöntemi ile kriterlere ait ağırlıklar belirlendikten sonra MARCOS (Measurement of Alternatives and Ranking according to COmpromise Solution) yöntemi kullanılarak alternatifler değerlendirilmiştir. Sonuç olarak, belirlenen sekiz farklı kriter içerisinden şarj süresi, dönme yarıçapı ve maksimum kaldıracağı yük miktarı en önemli kriter olarak belirlenmiştir. Farklı değerlendirme kriterleri için en iyi alternatif olarak Kuzey Amerika’da üretilen A7 alternatifi belirlenmiştir. KW - Otonom forklift KW - Pisagor bulanık sayılar KW - CRITIC KW - MARCOS KW - Çok kriterli karar verme N2 - In production and storage facilities, forklifts are commonly used to increase the efficiency of operations. Particularly in recent years, advancements in technology and the implementation of Industry 4.0 practices have led to the adoption of autonomous forklifts in modern enterprises, replacing conventional forklifts. These environmentally friendly and 24/7 operational vehicles not only enhance productivity within the organization but also mitigate accidents stemming from human error. This study has been developed to support modern enterprises in the process of selecting autonomous forklifts. The criteria for selecting these vehicles have been determined through a review of the literature. To minimize the impact of uncertainties and subjectivity in this process, the problem has been solved using Pythagorean fuzzy numbers. After determining the weights of the criteria with the CRITIC (Criteria Importance Through Intercriteria Correlation) method, the alternatives were evaluated using the MARCOS (Measurement of Alternatives and Ranking according to COmpromise Solution) method. In conclusion, among the eight specified criteria, charging time, turning radius, and maximum load capacity have been identified as the most significant criteria. As the optimal alternative for different evaluation criteria, the A7 alternative produced in North America has been determined. CR - Abdellatif, M., Shoeir, M., Talaat, O., Gabalah, M., Elbably, M., & Saleh, S. (2018). Design of an autonomous forklift using kinect, MATEC Web Conference, 1-5, Malezya. doi: https://doi.org/10.1051/matecconf/201815304005 CR - Abuzied, H., Nazih, N., & Sahbel, A. (2024). Design and simulation of eco-friendly smartphone controlled forklift. Heliyon, 10, e30682. doi: https://doi.org/10.1016/j.heliyon.2024.e30682 CR - Ahmed, I., Jeon, G., & Piccialli, F. (2022). From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where. IEEE Transactions on Industrial Informatics, 18(8), 5031-5042. doi: https://doi.org/ 10.1109/TII.2022.3146552 CR - Amio, F. F., Ahmed, N., Jeong, S., Jung, I., & Nam, K. (2024). Optimizing precision material handling: Elevating performance and safety through enhanced motion control in industrial forklifts. Electronics, 13(9), 1732. doi: https://doi.org/10.3390/electronics13091732 CR - Atalık, G. & Senturk, S. (2019). A new ranking method for triangular intuitionistic fuzzy number based on gergonne point. Nicel Bilimler Dergisi, 1(1), 59-73. doi: https://orcid.org/0000-0002-9503-7388 CR - Ayçin, E. ve Arsu, T. (2022). Sosyal gelişme endeksine göre ülkelerin değerlendirilmesi: MEREC ve MARCOS yöntemleri ile bir uygulama. İzmir Yönetim Dergisi, 2(2), 75-88. doi: https://doi.org/10.56203/iyd.1084310 CR - Bhat, A., Kai, N., Suzuki, T., Shiroshima, T., & Yoshida, H. (2023). An advanced autonomous forklift based on a networked control system. IFAC Papers Online, 56(2), 11444-11449. doi: https://doi.org/10.1016/j.ifacol.2023.10.432 CR - Birkocak, D. T., Acar, E., Bakadur, A. Ç., Ütebay, B., & Özdağoğlu, A. (2023). An application of the MARCOS method within the framework of sustainability to determine the optimum recycled fibre-containing fabric. Fibers and Polymers, 24(7), 2595-2608. doi: https://doi.org/ 10.1007/s12221-023-00197-6 CR - Chen, Y., Zhong, J., Mumtaz, J., Zhou, S., & Zhu, L. (2023). An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line. Expert Systems with Applications, 120600. doi: https://doi.org/10.1016/j.eswa.2023.120600 CR - Choi, M., Ahn, S., & Seo, J. O. (2020). VR-Based investigation of forklift operator situation awareness for preventing collision accidents. Accident Analysis and Prevention, 136, 105404. doi: https://doi.org/10.1016/j.aap.2019.105404 CR - Demirci, A. ve Manavgat, G. (2021). Veri zarflama analizi, TOPSIS ve VIKOR teknikleriyle forklift aracı seçimi: Karma model önerisi. Hacettepe Üniversitesi Sosyal Bilimler Dergisi, 3(1). https://dergipark.org.tr/tr/download/article-file/1223229 CR - Dey, B. K., Bhuniya, S., & Sarkar, B. (2021). Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Systems with Applications, 184, 115464. doi: https://doi.org/10.1016/j.eswa.2021.115464 CR - Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770. doi: https://doi.org/10.1016/0305-0548(94)00059-H CR - Ersoy, N. (2022). Kriter ağırlıklandırma yöntemlerinin ÇKKV sonuçları üzerindeki etkisine yönelik gerçek bir hayat uygulaması. MANAS Sosyal Araştırmalar Dergisi, 11(4), 1449-1463. doi: https://doi.org/10.33206/mjss.1026666 CR - Ertemel, A. V., Menekse, A., & Camgoz Akdag, H. (2023). Smartphone addiction assessment using Pythagorean fuzzy CRITIC-TOPSIS. Sustainability, 15(5), 3955. doi: https://doi.org/10.3390/su15053955 CR - Fazlollahtabar, H., Smailbašić, A., & Stević, Ž. (2019). FUCOM method in group decision-making: Selection of forklift in a warehouse. Decision Making: Applications in Management and Engineering, 2(1), 49-65. doi: https://doi.org/10.31181/dmame1901065f CR - Görçün, Ö. F., Ulutaş, A., Topal, A., & Ecer, F. (2024). Telescopic forklift on through a novel interval-valued Fermatean fuzzy PIPRECIA-WISP approach. Expert Systems with Applications, 255, 124674. doi: https://doi.org/10.1016/j.eswa.2024.124674 CR - Gurrala, K. R., Helmy, M., & Ndiaye, M. (2022). Edible packaging selection employing hybrid CRITIC and TOPSIS method, 2022 International Conference On Decision Aid Sciences And Applications (DASA), 822-826, Tayland. doi: https://doi.org/10.1109/DASA54658.2022.976501 CR - Keleş, N. (2023). A multi-criteria decision-making framework based on the MEREC method for the comprehensive solution of forklift selecetion problem. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 18(2), 573-590. doi: https://doi.org/10.17153/oguiibf.1270016 CR - Liaw, C. F., Hsu, W. C. J., & Lo, H. W. (2020). A hybrid MCDM model to evaluate and classify outsourcing providers in manufacturing. Symmetry, 12(12), 1962. doi: https://doi.org/10.3390/sym12121962 CR - Liu, Z. (2023). Selecting renewable desalination using uncertain data: an MCDM framework combining mixed objective weighting and interval MARCOS. Water Supply, 23(4), 1571-1586. doi: https://doi.org/ 10.2166/ws.2023.049 CR - Lopez, J., Zalama, E., & Gomez-Garcia-Bermejo, J. (2022). A simulation and control framework for AGV based transport systems. Simulation Modelling Practice and Theory, 116, 102430. doi: https://doi.org/10.1016/j.simpat.2021.102430 CR - Market Research Future. (2024). Erişim adresi: https//www.marketresearchfuture.com/reports/autonomous-forklift-market 21410/?utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=2893753364&hsa_cam=20993525697&hsa_grp=159373415435&hsa_ad=690148612733&hsa_src=g&hsa_tgt=dsa-2295322977996&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1 CR - Mishra, A. R., Rani, P., Pamucar, D., & Saha, A. (2023). An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem. Annals of Operations Research, 1-42. doi: https://doi.org/10.1007/s10479-023-05453-9 CR - Mitra, A. (2022). Cotton fibre selection based on quality value using measurement of alternatives and ranking according to compromise solution (MARCOS) method. Research Journal of Textile and Apparel, 28(2), 299-316. doi: https://doi.org/10.1108/RJTA-03-2022-0030 CR - Mohammadpour, M., Kelouwani, S., Gaudreau, M. A., Zeghmi, L., Amamou, A., Bahmanabadi, H. … Graba, M. (2024). Energy-efficient motion planning of an autonomous forklift using deep neural networks and kinetic model. Expert Systems with Applications, 237, 121623. doi: https://doi.org/10.1016/j.eswa.2023.121623 CR - Pamučar, D. & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive. Expert Systems with Applications, 42(6), 3016-3028. doi: https://doi.org/10.1016/j.eswa.2014.11.057 CR - Sarıçalı, G. ve Kundakcı, N. (2017). Forklift alternatiflerinin KEMIRA-M yöntemi ile değerlendirilmesi. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 4(1), 35-53. doi: https://doi.org/10.17541/optimum.285053 CR - Saxena, P., Kumar, V., & Ram, M. (2022). A novel CRITIC-TOPSIS approach for optimal selection of software reliability growth model (SRGM). Quality and Reliability Engineering International, 38(5), 2501-2520. doi: https://doi.org/10.1002/qre.3087 CR - Shete, R. G., Kakade, S. K., & Dhanvijay, M. (2021). A blind-spot assistance for forklift using ultrasonic sensor, 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), 1-4, Hindistan. doi: https://doi.org/10.1109/TRIBES52498.2021.9751672 CR - Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. doi: https://doi.org/10.1016/j.cie.2019.106231 CR - Toktaş Palut, P. ve Okçuoğlu, F. (2019). Depo tasarımı ve yerleşimi: Bir gerçek hayat uygulaması. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2), 14-22. doi: https://doi.org/10.20854/bujse.577992 CR - Trung, D. D. (2022). Development of data normalization methods for multi-criteria decision making: applying for MARCOS method. Manufacturing Review, 9, 22. doi: https://doi.org/10.1051/mfreview/2022019 CR - Tuş, A. & Aytaç Adalı, E. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56, 528–538. doi: https://doi.org/10.1007/s12597-019-00371-6 CR - Ulutaş, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karaköy, Ç. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672. doi: https://doi.org/10.3390/math8101672 CR - Ulutaş, A., Topal, A., Karabasevic, D., & Balo, F. (2023). Selection of a forklift for a cargo company with fuzzy BWM and fuzzy MCRAT methods. Axioms, 12(5), 467. https://doi.org/10.3390/axioms12050467 CR - Vorasawad, K., Park, M., & Kim, C. (2023). Efficient navigation and motion control for autonomous forklifts in smart warehouses: LSPB trajectory planning and MPC implementation. Machines, 11(12), 1050. doi: https://doi.org/10.3390/machines11121050 CR - Wang, Y., Wang, W., Wang, Z., Deveci, M., Roy, S. K., & Kadry, S. (2024). Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method, Information Sciences, 664, 120326. doi: https://doi.org/10.1016/j.ins.2024.120326 CR - Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision-making. IEEE Transactions on Fuzzy Systems, 22, 958-965. doi: https://doi.org/10.1109/TFUZZ.2013.2278989 CR - Zadeh L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. doi: https://doi.org/10.2307/2272014 CR - Zafar, S., Alamgir, Z., & Rehman, M. H. (2021). An effective blockchain evaluation system based on entropy-CRITIC weight method and MCDM techniques. Peer-to-Peer Networking and Applications, 14(5), 3110-3123. doi: https://doi.org/10.1007/s12083-021-01173-8 CR - Zhang, D. & Wang, G. (2023). Geometric score function of Pythagorean fuzzy numbers determined by the reliable information region and its application to group decision-making. Engineering Applications of Artificial Intelligence, 121, 105973. doi: https://doi.org/10.1016/j.engappai.2023.105973 CR - Zhang, T., Li, H., Fang, Y., Luo, M., & Cao, K. (2023). Joint dispatching and cooperative trajectory planning for multiple autonomous forklifts in a warehouse: A search-and-learning-based approach. Electronics, 12(18), 3820. doi: https://doi.org/10.3390/electronics12183820 UR - https://doi.org/10.31796/ogummf.1496123 L1 - https://dergipark.org.tr/tr/download/article-file/3983107 ER -