TY - JOUR T1 - Solüsyon Yakma Sentezi ile LFP/C Eldesi ve Karbon Kaynağı Olarak Kullanılan Sükroz Oranının Elektrokimyasal Performansa Etkisi TT - The Effect of Sucrose Ratio Used as a Carbon Source on the Electrochemical Performance and the Production of LFP/C by Solution Combustion Synthesis AU - Sökmen, Mustafa Furkan AU - Usta, Samet AU - Tokur, Mahmud PY - 2025 DA - October Y2 - 2025 DO - 10.35414/akufemubid.1497372 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 1147 EP - 1154 VL - 25 IS - 5 LA - tr AB - Şarj edilebilir lityum iyon pillerin yaygın ve genişletilmiş uygulamaları, gelişmiş pillerin optimize edilmesini gerektirmektedir. LiFePO4 (LFP), yüksek stabilitesi, bolluğu ve çevre dostu olması nedeniyle geniş ölçüde ümit verici katot malzemesi olarak kabul edilmektedir. Bu çalışmada, lityum iyon piller için iyileştirilmiş elektrokimyasal özelliklere sahip katot malzemesi olarak karbon takviyeli LiFePO4/C kompozitinin sentezine dayalı bir çözelti yanma tekniği uygulanmıştır. Hammadde olarak düşük maliyetli demir (III) nitrat içeren bileşik ile beraberinde yakıt olarak glisin kullanılmıştır. Farklı miktardaki yakıt karışımında değişken fazlar XRD analizleri ile tespit edilmiş ve en optimal yakıt oranının 4:1 olduğu tespit edilmiştir. Bu yakıt oranında otomatik yanmanın tam olarak gerçekleştiği gözlenmiştir. Elde edilen LFP’nin elektrokimyasal özelliklerini iyileştirmek için karbon kaynağı olarak ağırlıkça farklı sükroz oranları parametrik olarak çalışılmış ve galvanostatik şarj deşarj testleri gerçekleştirilmiştir. Ağırlıkça %15 karbon içeren sentezlenmiş LFP/C numunesi C/20 akım yoğunluğunda 150 mAh/g kapasiteye ulaşmıştır. Elde edilen sonuçların uygun maliyetli, yüksek kapasiteli, uzun ömürlü ve çevreye duyarlı lityum iyon pillerin geliştirilmesinde umut verici olduğu gözlemlenmiştir. KW - Lityum iyon KW - LFP KW - Karbon KW - Kapasite KW - Çevrim Ömrü N2 - The widespread and expanded applications of rechargeable lithium-ion batteries necessitate the optimization of advanced batteries. LiFePO4 (LFP) is widely considered a promising cathode material due to its high stability, abundance, and environmental friendliness. In this study, a solution combustion technique was applied to synthesize a carbon-reinforced LiFePO4/C composite with improved electrochemical properties for lithium-ion batteries. As raw materials, a low-cost iron (III) nitrate compound was used along with glycine as fuel. Variable phases in different amounts of fuel mixtures were identified by XRD analyses, and the optimal fuel ratio was determined to be 4:1. It was observed that complete auto-ignition occurred at this fuel ratio. To enhance the electrochemical properties of the obtained LFP, different weight percentages of sucrose as a carbon source were studied parametrically, and galvanostatic charge-discharge tests were performed. The synthesized LFP/C sample containing 15% by weight carbon achieved a capacity of 150 mAh/g at a C/20 current density. The obtained results are promising for the development of cost-effective, high-capacity, long-lasting, and environmentally friendly lithium-ion batteries. CR - Aravindan, V. L. 2015. Research progress on negative electrodes for practical Li‐ion batteries: beyond carbonaceous anodes. Advanced Energy Materials, 5(13), 1402225. https://doi.org/10.1002/aenm.201402225 CR - Barbero, G., and Lelidis, I. 2017. Analysis of Warburg's impedance and its equivalent electric circuits. Physical Chemistry Chemical Physics, 19(36), 24934-24944. https://doi.org/10.1039/C7CP04032F CR - Bruce, P. G., Freunberger, S. A., Hardwick, L. J., and Tarascon, J. M. 2012. Li–O2 and Li–S batteries with high energy storage. Nature materials, 11(1), 19-29. https://doi.org/10.1038/nmat3191 CR - Dose, W.M. 2022. Synthesis of high-density olivine LiFePO₄ from Paleozoic siderite FeCO₃ and its electrochemical performance in lithium batteries. APL Materials, 10(4). https://doi.org/10.1063/5.0084105 CR - Dunn, B., Kamath, H. and Tarascon, J.M. 2011. Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/science.1212741 CR - Fu, J., Jiang, X., Han, W. and Cao, Z. 2021. Enhancing the cycling stability of transition-metal-oxide-based electrochemical electrode via Pourbaix diagram engineering. Energy Storage Materials, 42, 252-258. https://doi.org/10.1016/j.ensm.2021.07.037 CR - Guo, F. H. 2023. In Situ Low-Temperature Carbonization Capping of LiFePO4 with Coke for Enhanced Lithium Battery Performance. Molecules, 28(16), 6083. https://doi.org/10.3390/molecules28166083 CR - Gülcan, M. F. 2024. Lityum İyon Batarya Üretiminde Kullanılan Hammaddelerin İncelemesi ve Türkiye’nin Batarya Üretim Potansiyelinin İrdelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 204-217. https://doi.org/10.35193/bseufbd.1294057 CR - Güler, A. 2022. Li iyon piller için grafen takviyeli spinel LiMn₂O₄ nano çubuk katot materyallerinin sentezi ve elektrokimyasal özelliklerinin geliştirilmesi. Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya, 167 s. CR - Güngör, H. 2018. Lityum iyon piller için NMC/karbon hibrit kompozitlerin sentezi ve elektrokimyasal karakterizasyonu. Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya, 72 s. CR - Hong, S.Y. 2013. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy & Environmental Science, 6, 2067-2081. https://doi.org/10.1039/c3ee40811f CR - Hu, J. H. 2020. Structure and performance of the LiFePO 4 cathode material: from the bulk to the surface. Nanoscale, 12(28), 15036-15044. https://doi.org/10.1039/D0NR03776A CR - Kalaiselvi, N., and Manthiram, A. 2010. One-pot, glycine-assisted combustion synthesis and characterization of nanoporous LiFePO4/C composite cathodes for lithium-ion batteries. Journal of Power Sources, 195(9), 2894-2899. https://doi.org/10.1016/j.jpowsour.2009.11.054 CR - Karami, M. M. 2021. Solution combustion synthesis of hierarchical porous LiFePO4 powders as cathode materials for lithium-ion batteries. Advanced Powder Technology, s. 32(6), 1935-1942. https://doi.org/10.1016/j.apt.2021.04.007 CR - Liu H., Zhang P., Li G.C., Wu Q., Wu Y.P. 2008. LiFePO 4/C composites from carbothermal reduction method. . Journal of Solid State Electrochemistry, 12, 1011-1015. https://doi.org/10.1007/s10008-007-0478-y CR - Li, D., Kasprzak, W., Patience, G. S., Sauriol, P., Villazón-Amarís, H., Dollé, M., ... and Liang, G. (2018). Production of lithium-ion cathode material for automotive batteries using melting casting process. In 9th International Symposium on High-Temperature Metallurgical Processing (pp. 135-146). Springer International Publishing. https://doi.org/10.1007/978-3-319-72138-5_14 CR - Mohan, E. H., Siddhartha, V., Gopalan, R., Rao, T. N., and Rangappa, D. 2014. Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application. AIMS Materials Science, 1(4), 191-201. https://doi.org/10.3934/matersci.2014.4.191 CR - Özcan, Ö. F., Karadağ, T., Altuğ, M., and Özgüven, Ö. 2021. Elektrikli araçlarda kullanılan pil kimyasallarının özellikleri ve üstün yönlerinin kıyaslanması üzerine bir derleme çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 276-298. CR - Ramasubramanian, B. S. 2022. Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review. Batteries, 8(10), 133. https://doi.org/10.3390/batteries8100133 CR - Rodrigues, S., Munichandraiah, N., and Shukla, A. K. 2001. Novel solution-combustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells. Journal of power sources, 102(1-2), 322-325. https://doi.org/10.1016/S0378-7753(01)00770-4 CR - Roshanaeı, K. T. 2023. Recent advances in lithium–ion battery utilization: A mini review. Sigma Journal of Engineering and Natural Sciences, 41(6), 1272-1296. https://doi.org/10.14744/sigma.2021.00077 CR - Tülek, E., and Altın, S. (2022). LiFePO4 Bataryalarda Güncel Çalışmalar. Türk Mühendislik Araştırma ve Eğitimi Dergisi, 1(2), 108-119. https://doi.org/10.5505/gujsa.2021.1294057 CR - Wang, K., Zhao, C., Min, S., and Qian, X. 2015. Facile synthesis of Cu2O/RGO/Ni (OH) 2 nanocomposite and its double synergistic effect on supercapacitor performance. Electrochimica Acta, 165, 314-322. https://doi.org/10.1016/j.electacta.2015.03.029 CR - Wang, J., and Sun, X. (2012). Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & environmental science, 5(1), 5163-5185. https://doi.org/10.1039/C1EE01263K CR - Wang, L., Chen, H., Zhang, Y., Liu, J., and Peng, L. 2024. Research Progress in Strategies for Enhancing the Conductivity and Conductive Mechanism of LiFePO4 Cathode Materials. Molecules, 29(22), 5250. https://doi.org/10.3390/molecules29225250 CR - Wessells, C. D., Peddada, S. V., Huggins, R. A., and Cui, Y. 2011. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano letters, 11(12), 5421-5425. https://doi.org/10.1021/nl203193q CR - Zhao, Q. F. 2022. Surface modification of LiFePO4 by coatings for improving of lithium-ion battery properties. International Journal of Electrochemical Science, , 17(11), 221142. https://doi.org/10.20964/2022.11.31 CR - Zuo, W., Zhu, W., Zhao, D., Sun, Y., Li, Y., Liu, J., and Lou, X. W. D. 2016. Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy & Environmental Science, 9(9), 2881-2891. https://doi.org/10.1039/C6EE01871H CR - Chemicals, A. 2020. Demir Oksit. Ataman Chemicals: https://www.atamanchemicals.com/iron-oxide_u26259/?lang=TR adresinden alındı UR - https://doi.org/10.35414/akufemubid.1497372 L1 - https://dergipark.org.tr/tr/download/article-file/3988810 ER -