TY - JOUR T1 - Refractive Index Sensor and Cancer Cell Detection with Plasmonic-Based Three-Band Nearly Perfect Absorber TT - Üç-bantlı Mükemmele Yakın Emici ile Kırılma İndisi Değişimi Tespiti AU - Erturan, Ahmet Murat AU - Gültekin, Seyfettin Sinan PY - 2024 DA - August Y2 - 2024 JF - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi PB - Erciyes Üniversitesi WT - DergiPark SN - 1012-2354 SP - 361 EP - 371 VL - 40 IS - 2 LA - en AB - In this study, an antenna providing nearly perfect absorption in triple-bands operating in the mid-infrared region is proposed. The nearly perfect plasmonic absorber, featuring nanoring and nanocross antennas, demonstrated high absorption efficiencies in numerical simulations. The triple-band absorber exhibited absorption rates of 95.2%, 97.3%, and 98.1% at wavelengths of 2730 nm, 4609 nm, and 7510 nm, respectively. High absorption values explain that the localized plasmon between the dielectric and metal layers of the antenna is quite strong. These high-energy resonance modes generated by subwavelength particles enable the sensor surface to respond robustly to varying environmental conditions. The strong response highlights the capability of the sensor to detect pathogens, biomolecules, chemicals, and organisms. The variable response of each resonance mode supports the identification of biomolecules. The proposed three-band perfect absorber is shown to have sensitivity values of 112.23 nm/RIU, 497.17 nm/RIU, and 841.94 nm/RIU, respectively. According to the changing refractive indices of each resonance mode, the figure of merit values was calculated as 3.67 RIU-1, 1.369 RIU-1, and 1.271 RIU-1, respectively. The numerical results show that the sensor can detect refractive index changes sensitively. To demonstrate the sensing ability, changes in resonance modes with different cancer cells were examined. The proposed nearly perfect absorber can detect different cancer cells at high detection level as 3.67 RIU-1, 1.369 RIU-1, and 1.271 RIU-1. KW - Plasmonic biosensor KW - perfect absorber KW - refractive index sensor KW - cancer detection N2 - Öz: Bu çalışmada orta kızılötesi bölgede çalışan, üçlü bantlarda mükemmele yakın soğurma sağlayan bir anten önerilmektedir. Nano halka ve nano çapraz antenlere sahip neredeyse mükemmel plazmonik soğurucu, sayısal simülasyonlarda yüksek soğurma verimliliği gösterdi. Üç bantlı soğurucu, 2730 nm, 4609 nm ve 7510 nm dalga boylarında sırasıyla %95,2, %97,3 ve %98,1 emme oranları sergiledi. Yüksek soğurma değerleri, antenin dielektrik ve metal katmanları arasındaki lokalize plazmonun oldukça güçlü olduğunu açıklamaktadır. Dalga boyunun altındaki parçacıklar tarafından üretilen bu yüksek enerjili rezonans modları, sensör yüzeyinin değişen çevre koşullarına güçlü bir şekilde yanıt vermesini sağlar. Güçlü yanıt, sensörün patojenleri, biyomolekülleri, kimyasalları ve organizmaları tespit etme yeteneğini vurgular. Her rezonans modunun değişken yanıtı, biyomoleküllerin tanımlanmasını destekler. Önerilen üç bantlı mükemmel soğurucunun sırasıyla 112,23 nm/RIU, 497,17 nm/RIU ve 841,94 nm/RIU hassasiyet değerlerine sahip olduğu gösterilmiştir. Her rezonans modunun değişen kırılma indislerine göre değer değerleri sırasıyla 3,67 RIU-1, 1,369 RIU-1 ve 1,271 RIU-1 olarak hesaplandı. Sayısal sonuçlar, sensörün kırılma indisi değişikliklerini hassas bir şekilde tespit edebildiğini göstermektedir. Algılama yeteneğini göstermek için farklı kanser hücrelerinde rezonans modlarındaki değişiklikler incelendi. Önerilen mükemmele yakın soğurucu, farklı kanser hücrelerini 3,67 RIU-1, 1,369 RIU-1 ve 1,271 RIU-1 gibi yüksek tespit seviyesinde tespit edebilmektedir. CR - C. W. Qiu and T. W. Odom, “Introduction: Chemistry of Metamaterials,” Chemical Reviews, vol. 122, no. 19. American Chemical Society, pp. 14987–14989, Oct. 12, 2022. doi: 10.1021/acs.chemrev.2c00541. CR - A. K. U. Michel, “Subwavelength hybrid plasmonic structures for nonlinear nanophotonics,” Light: Science and Applications, vol. 10, no. 1. Springer Nature, Dec. 01, 2021. doi: 10.1038/s41377-021-00479-9. CR - X. Deng, L. Li, M. Enomoto, and Y. Kawano, “Continuously Frequency-Tuneable Plasmonic Structures for Terahertz Bio-sensing and Spectroscopy,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-39015-6. CR - S. Khani and M. Afsahi, “Optical Refractive Index Sensors Based on Plasmon-Induced Transparency phenomenon in a Plasmonic Waveguide Coupled to Stub and Nano-disk Resonators,” Plasmonics, vol. 18, no. 1, pp. 255–270, Feb. 2023, doi: 10.1007/s11468-022- 01772-y. CR - D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: Linear control of light with light,” Nature Reviews Materials, vol. 2. Nature Publishing Group, Oct. 04, 2017. doi: 10.1038/natrevmats.2017.64. CR - S. Mostufa et al., “Metamaterial as perfect absorber for high sensitivity refractive index based biosensing applications at infrared frequencies,” J Phys D Appl Phys, vol. 56, no. 44, Nov. 2023, doi: 10.1088/1361-6463/aceb6f. CR - A. M. Erturan, S. S. Gultekin, and H. Durmaz, “Detection of 2,4-Dinitrotoluene by Metal-Graphene Hybrid Plasmonic Nanoantennas with a Golden Ratio Rectangular Resonator,” Elektronika ir Elektrotechnika, vol. 29, no. 3, pp. 33–38, 2023, doi: 10.5755/j02.eie.33869. CR - A. M. Erturan, H. Durmaz, and S. S. Gültekin, “Simultaneous detection of molecules with the surface-enhanced infrared absorption sensor platform based on disk antennas with double spacer,” Spectroscopy Letters, vol. 56, no. 5, pp. 283–292, 2023, doi: 10.1080/00387010.2023.2208650. CR - J. Li et al., “Metamaterial grating-integrated graphene photodetector with broadband high responsivity,” Appl Surf Sci, vol. 473, pp. 633–640, Apr. 2019, doi: 10.1016/j.apsusc.2018.12.194. CR - T. Wang et al., “Ultrafast metamaterial all-optical switching based on coherent modulation,” Opt Express, vol. 30, no. 6, p. 9284, Mar. 2022, doi: 10.1364/oe.449960. CR - E. Ahamed, M. R. I. Faruque, M. J. Alam, M. F. Bin Mansor, and M. T. Islam, “Digital metamaterial filter for encoding information,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020- 60170-8. CR - M. Ossiander et al., “Metasurface-stabilized optical microcavities,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-36873-7. CR - E. Mauriz and L. M. Lechuga, “Plasmonic biosensors for single-molecule biomedical analysis,” Biosensors (Basel), vol. 11, no. 4, 2021, doi: 10.3390/bios11040123. CR - R. Yang et al., “Subwavelength optical localization with toroidal excitations in plasmonic and Mie metamaterials,” InfoMat, vol. 3, no. 5. Blackwell Publishing Ltd, pp. 577–597, May 01, 2021. doi: 10.1002/inf2.12174. CR - Y. Zhang et al., “Plasmonic tweezers: for nanoscale optical trapping and beyond,” Light: Science and Applications, vol. 10, no. 1. Springer Nature, Dec. 01, 2021. doi: 10.1038/s41377-021- 00474-0. CR - V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chemical Reviews, vol. 118, no. 12. American Chemical Society, pp. 5912–5951, Jun. 27, 2018. doi: 10.1021/acs.chemrev.8b00243. CR - B. Jafari et al., “Highly sensitive label-free biosensor: graphene/CaF2 multilayer for gas, cancer, virus, and diabetes detection with enhanced quality factor and figure of merit,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-43480-5. CR - L. Hajshahvaladi, H. Kaatuzian, M. Moghaddasi, and M. Danaie, “Hybridization of surface plasmons and photonic crystal resonators for high-sensitivity and high-resolution sensing applications,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-25980-y. CR - S. Yang et al., “Single-peak and narrow-band mid-infrared thermal emitters driven by mirror- coupled plasmonic quasi-BIC metasurfaces,” Optica, vol. 11, no. 3, p. 305, Mar. 2024, doi: 10.1364/optica.514203. CR - J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-06749-0. CR - R. C. Fitzgerald, A. C. Antoniou, L. Fruk, and N. Rosenfeld, “The future of early cancer detection,” Nature Medicine, vol. 28, no. 4. Nature Research, pp. 666–677, Apr. 01, 2022. doi: 10.1038/s41591-022-01746-x. CR - M. R. Nickpay, M. Danaie, and A. Shahzadi, “Highly Sensitive THz Refractive Index Sensor Based on Folded Split-Ring Metamaterial Graphene Resonators,” Plasmonics, vol. 17, no. 1, pp. 237– 248, Feb. 2022, doi: 10.1007/s11468-021-01512-8. CR - E. D. Palik, S. Diego, L. Boston, N. York, and S. T. Toronto, “Hand book of Optical Constants of Solids Edited by,” 1998. [Online]. Available: http://www.apnet.com CR - N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys Rev Lett, vol. 100, no. 20, May 2008, doi: 10.1103/PhysRevLett.100.207402. CR - Y. Xie et al., “A multifrequency narrow-band perfect absorber based on graphene metamaterial,” Diam Relat Mater, vol. 137, Aug. 2023, doi: 10.1016/j.diamond.2023.110100. CR - R. S. El Shamy, D. Khalil, and M. A. Swillam, “Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020- 57538-1. CR - G. Lin et al., “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt Express, vol. 27, no. 23, p. 33359, Nov. 2019, doi: 10.1364/oe.27.033359. CR - J. Wang, Z. Xu, and D. G. Kotsifaki, “Plasmonic and metamaterial biosensors: a game-changer for virus detection,” Sensors and Diagnostics, vol. 2, no. 3. Royal Society of Chemistry, pp. 600–619, May 01, 2023. doi: 10.1039/d2sd00217e. CR - M. El barghouti, O. Haidar, A. Akjouj, and A. Mir, “Figure of merit and sensitivity enhancement of biosensor LSPR in investigated for visible and near infrared,” Photonics Nanostruct, vol. 50, Jul. 2022, doi: 10.1016/j.photonics.2022.101016. CR - Q. Duan, Y. Liu, S. Chang, H. Chen, and J. H. Chen, “Surface plasmonic sensors: Sensing mechanism and recent applications,” Sensors, vol. 21, no. 16. MDPI AG, Aug. 02, 2021. doi: 10.3390/s21165262. CR - M. A. Jabin et al., “Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection,” IEEE Photonics J, vol. 11, no. 4, 2019, doi: 10.1109/JPHOT.2019.2924825. CR - P. Sharma, P. Sharan, and P. Deshmukh, “A photonic crystal sensor for analysis and detection of cancer cells,” 2015 International Conference on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, vol. 2, no. 1, pp. 1–5, 2015, doi: 10.1109/PERVASIVE.2015.7087208. CR - P. Kumar, Rohan, V. Kumar, and J. S. Roy, “Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss,” Optik (Stuttg), vol. 144, pp. 363–369, 2017, doi: 10.1016/j.ijleo.2017.06.131. CR - K. Ahmed, B. K. Paul, F. Ahmed, M. A. Jabin, and M. S. Uddin, “Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the Terahertz range,” IET Optoelectronics, vol. 15, no. 1, pp. 1–7, 2021, doi: 10.1049/ote2.12006. UR - https://dergipark.org.tr/tr/pub/erciyesfen/issue//1508641 L1 - https://dergipark.org.tr/tr/download/article-file/4037464 ER -