TY - JOUR T1 - Barnes-Mittag-Leffler Fonksiyonu ile İlişkili Spirallike Fonksiyonlar Sınıfının Sabordinasyon Özellikleri TT - Subordination Properties of the Class of Spirallike Functions Associated with the Barnes-Mittag-Leffler Function AU - Altınkaya, Şahsene PY - 2025 DA - June Y2 - 2024 DO - 10.35414/akufemubid.1511776 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe Üniversitesi WT - DergiPark SN - 2149-3367 SP - 477 EP - 482 VL - 25 IS - 3 LA - tr AB - Mittag-Leffler fonksiyonunun ve genelleştirmelerinin mühendislik, fizik, biyoloji ve diğer uygulamalı bilimlerdeki doğrudan kullanımları daha fazla tanınmasını sağlamıştır. Bunun yanı sıra bu fonksiyonun analitik özelliklerinin araştırılmasına yönelik de birçok araştırma mevcuttur. Bu çalışmada, Barnes-Mittag-Leffler fonksiyonunu, Mittag-Leffler fonksiyonun bir genelleştirmesi, E_(K,v)^a (z;s)=∑_(n=0)^∞▒z^n/( (Kn+v)(〖n+a)〗^s ) (z,s∈C,a,v∈C\Z_0^- ve (K)>0) araştırılmıştır. Ayrıca, Barnes-Mittag-Leffler fonksiyonunu içeren spirallike fonksiyonlar sınıfının yeni bir alt sınıfı S_(K,v)^a (A,λ) tanımlanmıştır. Tanımlanan S_(K,v)^a (A,λ) sınıfı için sabordinasyon özellikleri incelenmiştir ve bu sınıfa ait fonksiyonlar için katsayı eşitsizlikleri elde edilmiştir. KW - Spirallike fonksiyon KW - sabordinasyon KW - konvolüsyon KW - Barnes-Mittag-Leffler Fonksiyonu N2 - The applications of the Mittag-Leffler function and its generalizations in engineering, physics, biology, and other applied sciences have led to its increased recognition. In addition, numerous studies investigate the analytical properties of this function. In this study, we examine the Barnes-Mittag-Leffler function, a generalization of the Mittag-Leffler function, defined as E_(K,v)^a (z;s)=∑_(n=0)^∞▒z^n/( (Kn+v)(〖n+a)〗^s ), where z,s∈C,a,v∈C\Z_0^- and (K)>0. Further, a new subclass S_(K,v)^a (A,λ) of spirallike functions involving the Barnes-Mittag-Leffler function is defined. Subordination properties are investigated for the newly defined class, and coefficient inequalities are obtained for functions belonging to this class. CR - Alenazi, A. and Mehrez, K., 2023. Further Geometric Properties of the Barnes-Mittag-Leffler Function. Axioms, 13(1), 1-14. https://doi.org/10.3390/axioms13010012 CR - Bansal, D. and Prajapat, J.K., 2016. Certain geometric properties of the Mittag-Leffler functions. Complex Variables and Elliptic Equations, 61(3), 338-350. https://doi.org/10.1080/17476933.2015.1079628 CR - Barnes, E.W., 1906. The asymptotic expansion of integral functions defined by Taylor's series. Philosophical Transactions of the Royal Society of London. Series A, 206(402-412), 249-297. https://doi.org/10.1098/rsta.1906.0019 CR - Dorrego, G.A. and Cerutti, R.A., 2012. The k-Mittag-Leffler function. International Journal of Contemporary Mathematical Sciences, 7(15), 705-716. CR - Garg, M., Manohar, P. and Kalla, S.L., 2013. A Mittag-Leffler-type function of two variables. Integral Transforms and Special Functions, 24(11), 934-944. https://doi.org/10.1080/10652469.2013.789872 CR - Gehlot, K.S., 2018. The p-k Mittag-Leffler function. Palestine Journal of Mathematics, 7(2), 628-632. CR - Goodman, A.W., 1984. Univalent functions, Volume I and Volume II. Mariner Pub. Co. Inc. Tampa Florida. CR - Gorenflo, R., Kilbas, A.A., Mainardi, F. and Rogosin, S.V., 2020. Mittag-Leffler functions, related topics and applications, Berlin: Springer, 540 pages. https://doi.org/10.1007/978-3-662-61550-8 CR - Gorenflo, R. and Mainardi, F., 1997. Fractional calculus: Integral and differential equations of fractional order, In: A. Carpinteri, F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, International Centre for Mechanical Sciences, Springer, Vienna, 378, 223–276. CR - Kilbaş, A.A. and Saigo, M., 1996. On Mittag-Leffler type function, fractional calculas operators and solutions of integral equations. Integral Transforms and Special Functions, 4, 355–370. CR - Libera, R. J., 1967. Univalent α-spiral functions. Canadian Journal of Mathematics, 19, 449-456. CR - Mehrez, K., Das, S. And Kumar, A., 2023. Monotonicity properties and functional inequalities for the Barnes Mittag-Leffler function. Miskolc Mathematical Notes, 24(2), 893-907. https://doi.org/10.18514/MMN.2023.3997 CR - Mittag-Leffler, G.M., 1903. Sur la nouvelle fonction E_a (x). Comptes Rendus de l'Académie des Sciences de Paris, 137(2), 554-558. CR - Pommerenke, C. 1975. Univalent functions. Vandenhoeck and Ruprecht. CR - Riemann, B. 1851. Grundlagen für eine allgemeine Theorie der Functionen einer veranderlichen complexen Grösse. PhD Thesis, University of Göttingen, Germany. CR - Prabhakar, T.R., 1971. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Mathematical Journal, 19(1), 7-15. CR - Shukla, A.K. and Prajapati, J.C., 2007. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336(2), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018 CR - Spacek, L., 1933. Contribution a la theorie fonctions univalentes. Casopis Pro Pestovani Matematiky, 62, 12-19. CR - Srivastava, H.M. and Tomovski, Z., 2009. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation, 211, 198-210. https://doi.org/10.1016/j.amc.2009.01.055 CR - Wilf, H.S., 1961. Subordinating factor sequence for convex maps of the unit circle, Proceedings of the American Mathematical Society, 12, 689-693. CR - Wiman, A., 1905. Über den Fundamentalsatz in der Theorie der Functionen E_a (x). Acta Mathematica, 29, 191–201. UR - https://doi.org/10.35414/akufemubid.1511776 L1 - https://dergipark.org.tr/tr/download/article-file/4050983 ER -