TY - JOUR T1 - Netflix İçeriklerinin Duygu Analizi Yöntemi İle İncelenmesi TT - Analyzing Netflix Content with Sentiment Analysis Method AU - Aksan, Adem AU - Oğuzlar, Ayşe PY - 2025 DA - August Y2 - 2025 DO - 10.37093/ijsi.1515251 JF - International Journal of Social Inquiry JO - ijsi PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 1307-8364 SP - 256 EP - 273 VL - 18 IS - 2 LA - tr AB - İnsanların yoğun ilgisiyle birlikte digital içerik platformlarının sayısı günden güne artmaktadır. Netflix’de kullanıcılar tarafından tercih edilen dijital içerik platformlarından biridir. Duygu analizi, 2000’li yılların başlangıcıyla birlikte metinlerin içerisinde yer alan duyguları ortaya çıkaran sözlük tabanlı bir tekniktir. Duygu analizi içerik geliştiricileri için de önemli bir araçtır. Bu sayede senaryo yazma, tanım metinleri oluşturma gibi konularda yazarlara katkı sağlar. Ayrıca ilgi çeken içeriklerin, metinsel açıdan analiz ederek yazarlara rehberlik eder. Bu bilgilerden yola çıkarak hazırlanan çalışmanın amacı, Netflix içeriklerine ait tanıtım metinlerini duygu analizi ile karşılaştırmaktır. Bu kapsamda, Türkiye yapımı Netflix içerikleri ile diğer ülkelere ait Netflix içeriklerini, denetimsiz öğrenme tekniği olan sözlük tabanlı duygu analizi ile karşılaştırılmıştır. NRC sözlük içerisinde yer alan 8 temel duygu düzeyinde analiz yapılarak bulgulara yer verilmiştir. Yapılan analiz sonucunda Türkiye yapımı içeriklere ait tanıtım metinlerinde korku duygusunun, diğer içeriklerde ise güven duygusunun öne çıktığı tespit edilmiştir. Türkiye yapımı içeriklerin tanıtım metinlerinin(-0,25), diğer ülkelere ait içeriklere(0,03) göre daha fazla negatif duyguya sahiptir. Ayrıca iki grup için elde edilen duygu skorları arasında %5 anlamlılık düzeyinde istatistiksel açıdan anlamlı bir farklılık olduğu tespit edilmiştir. KW - Duygu Sınıflandırması KW - Duygu Analizi KW - Veri Madenciliği KW - Dijital Platform KW - Netflix N2 - The number of digital content platforms is increasing due to people's growing interest. Netflix is a popular choice among users. Since the early 2000s, sentiment analysis, a dictionary-based technique, has been used to reveal emotions in texts. It is also an important tool for content developers and contributes to writers in areas such as scriptwriting and creating descriptive texts. It also guides authors by analyzing interesting content from a textual perspective. Based on this information, this study aims to compare the promotional texts of Netflix content with sentiment analysis. In this context, Netflix content from Türkiye and Netflix content from other countries were compared using dictionary-based sentiment analysis, which is an unsupervised learning technique. The findings were analyzed using the 8 basic emotion levels in the NRC dictionary. As a result of the analysis, it was determined that the emotion of fear was prominent in the promotional texts of Türkiye-made content, while the emotion of trust was prominent in other content. Promotional texts of Turkish-made content (-0.25) have more negative emotions than content from other countries (0.03). In addition, a statistically significant difference was found between the emotion scores obtained for the two groups at a significance level of 5%. CR - 2024’te Dijital Platformlarda En Çok İzlenen 10 Yerli Dizi - Beyazperde.com. (n.d.). Retrieved February 2, 2025, from https://www.beyazperde.com/galerileri/diziler/galerileri-1000121575/#google_vignette CR - Agarwal, B., & Mittal, N. (2016). Prominent Feature Extraction for Sentiment Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-25343-5 CR - Barker, C., & Wiatrowski, M. (2017). The age of Netflix : critical essays on streaming media, digital delivery and instant access. McFarland & Company, Inc., Publishers. CR - Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design framework, applications and future scopes. Artificial Intelligence Review, 56(11), 12505–12560. https://doi.org/10.1007/S10462-023-10442-2/FIGURES/3 CR - Bordwell, D., & Thompson, K. (2019). Film Art: An Introduction (12. baskı). McGraw-Hill Professional. CR - Cambria, E., Havasi, C., & Hussain, A. (2012). SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis. FLAIRS Conference. CR - Chalaby, J. (2023). Television in the Streaming Era. In The Rise of Networks (pp. 36–55). Cambridge University Press. https://doi.org/10.1017/9781009199285.004 CR - Chintalapudi, N., Battineni, G., Canio, M. Di, Sagaro, G. G., & Amenta, F. (2021). Text mining with sentiment analysis on seafarers’ medical documents. International Journal of Information Management Data Insights, 1(1), 100005. https://doi.org/10.1016/J.JJIMEI.2020.100005 CR - Dang, Y., Zhang, Y., & Chen, H. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46–53. https://doi.org/10.1109/MIS.2009.105 CR - Demirel, S., Kahraman-Gokalp, E., & Gündüz, U. (2024). From Optimism to Concern: Unveiling Sentiments and Perceptions Surrounding ChatGPT on Twitter. International Journal of Human–Computer Interaction, 1–23. https://doi.org/10.1080/10447318.2024.2392964 CR - Fayyad Usame, P.-S. G. S. P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communıcatıons Of The ACM, 39(11), 27–34. http://shawndra.pbworks.com/f/The KDD process for extracting useful knowledge from volumes of data.pdf CR - Fernando Sánchez-Rada, J., Araque, O., & Iglesias, C. A. (2020). Senpy: A framework for semantic sentiment and emotion analysis services ✩. Elsevier, 190(Senpy: A framework for semantic sentiment and emotion analysis services), 105193. https://doi.org/10.1016/j.knosys CR - Garg, P. K., Pandey, M., & Arora, M. (2019). Sentiment Analysis for Predicting the Popularity of Web Series. Communications in Computer and Information Science, 1230 CCIS, 133–140. https://doi.org/10.1007/978-981-15-5830-6_12 CR - Garg, R., Kiwelekar, A. W., Netak, L. D., & Bhate, S. S. (2021). Potential Use-Cases of Natural Language Processing for a Logistics Organization. 157–191. https://doi.org/10.1007/978-3-030-68291-0_13 CR - Gündüz, U., & Demirel, S. (2023). Metaverse-related perceptions and sentiments on Twitter: evidence from text mining and network analysis. Electronic Commerce Research, 1–31. https://doi.org/10.1007/S10660-023-09745-X/TABLES/4 CR - Gündüz, U., Demirel, S., & Tombul, I. (2024). Exploring the concept of financial domination on social media: sentiment and text analysis on Twitter. Atlantic Journal of Communication, 32(4), 602–625. https://doi.org/10.1080/15456870.2023.2178000 CR - Hanusz, Z., Tarasinska, J., & Zielinski, W. (2016). Shapiro–Wilk Test with Known Mean. REVSTAT-Statistical Journal, 14(1), 89-100–189–100. https://doi.org/10.57805/REVSTAT.V14I1.180 CR - Hernandez-Farias, I., Benedi, J. M., & Rosso, P. (2015). Applying basic features from sentiment analysis for automatic irony detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9117, 337–344. https://doi.org/10.1007/978-3-319-19390-8_38 CR - Hull, R. (1997). Managing Semantic Heterogeneity in Databases : A Theoretical Perspective. http://arru-db.research.bell-labs.com/user/hull/pods97-tutoridl.html. Introduction to the Syuzhet Package. (n.d.). Retrieved December 30, 2020, from https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html? CR - Jagdale, R. S., Shirsat, V. S., & Deshmukh, S. N. (2019). Sentiment analysis on product reviews using machine learning techniques. Advances in Intelligent Systems and Computing, 768, 639–647. https://doi.org/10.1007/978-981-13-0617-4_61 CR - Jang, M., Kim, D., & Baek, H. (2023). How do global audiences of TV shows take shape?: Evidence from Netflix. Applied Economics Letters, 30(3), 285–291. https://doi.org/10.1080/13504851.2021.1983916 CR - Jockers, M. M. (2020). Package “syuzhet” Type Package Title Extracts Sentiment and Sentiment-Derived Plot Arcs from Text. https://github.com/mjockers/syuzhet CR - Kahraman, E., Demirel, S., & Gündüz, U. (2023). COVID-19 vaccines in twitter ecosystem: Analyzing perceptions and attitudes by sentiment and text analysis method. Journal of Public Health (Germany), 1–15. https://doi.org/10.1007/S10389-023-02078-X/METRICS CR - Karami, A., Bookstaver, B., Nolan, M., & Bozorgi, P. (2021). Investigating diseases and chemicals in COVID-19 literature with text mining. International Journal of Information Management Data Insights, 1(2), 100016. https://doi.org/10.1016/J.JJIMEI.2021.100016 CR - Kumar, S., Kar, A. K., & Ilavarasan, P. V. (2021). Applications of text mining in services management: A systematic literature review. International Journal of Information Management Data Insights, 1(1), 100008. https://doi.org/10.1016/J.JJIMEI.2021.100008 CR - Li, J., & Qiu, L. (2017). A sentiment analysis method of short texts in microblog. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017, 1, 776–779. https://doi.org/10.1109/CSE-EUC.2017.153 CR - Li, N., & Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48(2), 354–368. https://doi.org/10.1016/j.dss.2009.09.003 CR - Liu, B. (2012a). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–184. https://doi.org/10.2200/S00416ED1V01Y201204HLT016 CR - Liu, B. (2012b). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers. CR - Lotz, A. D. . (2022). Netflix and streaming video : the business of subscriber-funded video on demand. Polity Press. CR - Lotz, A. D., Eklund, O., & Soroka, S. (2022). Netflix, library analysis, and globalization: rethinking mass media flows. Journal of Communication, 72(4), 511–521. https://doi.org/10.1093/JOC/JQAC020 CR - MacDowell, J. (2014). Happy Endings in Hollywood Cinema : Cliché, Convention and the Final Couple. Edinburgh University Press. CR - MacFarland, T. W., & Yates, J. M. (2016). Mann–Whitney U Test. Introduction to Nonparametric Statistics for the Biological Sciences Using R, 103–132. https://doi.org/10.1007/978-3-319-30634-6_4 CR - Maranatha, Y. G., & Karyatun, S. (2024). Netflix Subscription Interest in Generation Z: Mobile Advertising, Service Quality, and Price Perception. 199–207. https://doi.org/10.2991/978-94-6463-394-8_20 CR - Matsumoto, D., & Hwang, H. S. (2011). Culture and Emotion. Journal of Cross-Cultural Psychology, 43(1), 91–118. https://doi.org/10.1177/0022022111420147 CR - Mesquita, B., & Walker, R. (2003). Cultural differences in emotions: a context for interpreting emotional experiences. Behaviour Research and Therapy, 41(7), 777–793. https://doi.org/10.1016/S0005-7967(02)00189-4 CR - Mohammad, S. M. (2020). Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text. Emotion Measurement, 201–237. http://arxiv.org/abs/2005.11882 CR - Mohammad, S. M., & Turney, P. D. (n.d.). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06 CR - Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06 CR - Na, J. C., Khoo, C., & Wu, P. H. J. (2005). Use of negation phrases in automatic sentiment classification of product reviews. Library Collections, Acquisition and Technical Services, 29(2), 180–191. https://doi.org/10.1016/j.lcats.2005.04.007 CR - Naldi, M. (2019). A review of sentiment computation methods with R packages. https://cran.r-project.org/web/packages/syuzhet/syuz CR - Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. https://doi.org/10.1016/J.JJIMEI.2021.100019 CR - Netflix Movies and TV Shows. (2024). https://www.kaggle.com/datasets/shivamb/netflix-shows/data CR - Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. CEUR Workshop Proceedings, 718, 93–98. http://arxiv.org/abs/1103.2903 CR - Özpay, O. (2019). Türk Korku Sinemasına Panoramik Bir Bakış ve İdeolojik İzdüşümleri. Akdeniz İletişim Dergisi, 32, 551–567. CR - Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. Antioch Review, 63(2), 271–278. https://doi.org/10.3115/1218955.1218990 CR - Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011 CR - Peng, Y. F., & Chou, T. R. (2019). Automatic color palette design using color image and sentiment analysis. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2019, 389–392. https://doi.org/10.1109/ICCCBDA.2019.8725717 CR - R. K. Bakshi, N. Kaur, R. K. and G. K. (2016). Opinion mining and sentiment analysis. 2016 International Conference on Computing for Sustainable Global Development (INDIACom), 452–455. https://0211mxbix-y-https-ieeexplore-ieee-org.proxy.uludag.deep-knowledge.net/document/7724305 CR - Rosenbusch, H., Evans, A. M., & Zeelenberg, M. (2019). Multilevel Emotion Transfer on YouTube: Disentangling the Effects of Emotional Contagion and Homophily on Video Audiences. Social Psychological and Personality Science, 10(8), 1028–1035. https://doi.org/10.1177/1948550618820309 CR - Şaki Aydın, O. (2019). Yeni İzleme Biçimleri Ve Netflix İçerikleri: Ritzer İn Mcdonaldlaşma Tezi Ekseninde Bir Değerlendirme. Journal of International Social Research, 12(63), 1164–1172. https://doi.org/10.17719/jisr.2019.3305 CR - Sarı, Ü., & Sancaklı, P. (2020). Küreselleşmenin Dijital Platformların İçerik Tanıtımına Etkisi: Netflix Örneği. Erciyes İletişim Dergisi, 7(1), 243–260. https://doi.org/10.17680/erciyesiletisim.647463 CR - Sigismondi, P., & Ciofalo, G. (2022). Glocalization processes and new centrifugal dynamics in the international entertainment landscape: the Netflix Case in Italy. Handbook of Culture and Glocalization, 305–320. https://doi.org/10.4337/9781839109010 CR - Stanković, M. (2018). TV Series or Not? AM Časopis Za Studije Umetnosti i Medija, 17, 1–13. CR - Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. In Applied Sciences (Switzerland) (Vol. 13, Issue 7). https://doi.org/10.3390/app13074550 CR - Türk Filmleri Seyirci Rekoru - İlk 100 (1989’dan günümüze) - Tüm Zamanlar - Box Office Türkiye. (n.d.). Retrieved February 2, 2025, from https://boxofficeturkiye.com/tum-zamanlar/seyirci-rekorlari/turk-filmleri CR - Vural, A. G., Cambazoglu, B. B., Senkul, P., & Tokgoz, Z. O. (2013). A Framework for Sentiment Analysis in Turkish: Application to Polarity Detection of Movie Reviews in Turkish. In Computer and Information Sciences III (pp. 437–445). Springer London. https://doi.org/10.1007/978-1-4471-4594-3_45 CR - Wegmann, E., & Brand, M. (2020). Cognitive Correlates in Gaming Disorder and Social Networks Use Disorder: a Comparison. Current Addiction Reports, 7(3), 356–364. https://doi.org/10.1007/S40429-020-00314-Y/FIGURES/4 CR - Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In G. Alexander (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 3406, pp. 486–497). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30586-6_53 CR - Xu, Y. (2021). Re-understanding Personal and Organizational Mission with Netflix Cultural Manual. Education Reform and Development, 3(1), 34–37. https://doi.org/10.26689/ERD.V3I1.2618 CR - Yılmaz, M., Atalar, U., & Topal, E. Ş. (2023). Türkiye’de Dijitalleşme ve Gençlerin İnternet Tabanlı Film-Dizi Platformlarındaki Aile Temsili Algıları: Kahramanmaraş Örneği Digitalization in Türkiye and Youth’s Perceptions of Family Representation on Internet-Based Movie-Series Platforms: The Case of Kahramanmaraş. Toplumsal Politika Dergisi, 4(2), 145–167. https://dergipark.org.tr/tr/pub/tpd CR - Zhai, Z., Xu, H., & Jia, P. (2010). An empirical study of unsupervised sentiment classification of chinese reviews. Tsinghua Science and Technology, 15(6), 702–708. https://doi.org/10.1016/S1007-0214(10)70118-8 CR - Zhang, Y. (2015). Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 435–439. https://doi.org/10.1145/2684822.2697033 UR - https://doi.org/10.37093/ijsi.1515251 L1 - https://dergipark.org.tr/tr/download/article-file/4066448 ER -