TY - JOUR T1 - Innovative Pedagogical Models for Teaching R Software: SPS Approach and a Proposed Application TT - R Yazılımı Öğretimi için Yenilikçi Pedagojik Modeller: SPÇ Yaklaşımı ve Önerilen Bir Uygulama AU - Atılgan, Mehmet AU - Akgül, Savaş PY - 2025 DA - September Y2 - 2025 DO - 10.53444/deubefd.1515755 JF - Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi JO - DEU BEF Dergi PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 2602-2850 SP - 2666 EP - 2677 IS - 65 LA - en AB - R is widely used for tasks such as statistical computations, data analysis, and visualization. As R software is open-source and free, its teaching is becoming increasingly popular in higher education. Recently, courses on R software have been incorporated into master's and doctoral programs. The Selective Problem Solving (SPS) model is a novel approach to creative problem-solving in mathematics education, based on mathematical problem-solving models, insightful thinking theories, and creativity research. It involves six sequential steps: defining the target problem, identifying the source problem, solving the target problem, creating an original problem, solving the original problem, and concluding with an evaluation. This study explores the theoretical framework of the SPS model and its application in teaching the R programming language. It specifically demonstrates the SPS model's use in selecting desired elements within matrices using R. The implementation is detailed through sub-steps and illustrative examples. Anticipated contributions include enriching content and fostering differentiation for educators teaching R. This study underscores the SPS model's viability as a teaching tool for R and suggests future exploration of its use for teaching various R-related subjects, as well as examining the overall efficacy of R instruction facilitated by the SPS model. KW - Creative problem solving KW - pedagogical framework KW - R programming education KW - selective problem solving model N2 - R, istatistiksel hesaplamalar, veri analizi ve görselleştirme gibi çeşitli veri analizi görevleri için kullanılmaktadır. R yazılımı açık kaynaklı ve ücretsiz olduğundan, yükseköğretimde R öğretimi giderek daha popüler hale gelmektedir. Son yıllarda, R yazılımının öğretimi ile ilgili dersler yüksek lisans ve doktora programlarında kendine yer bulmaya başlamıştır. Seçici Problem Çözme (SPÇ) modeli, matematik eğitiminde yaratıcı problem çözmeye yönelik yeni bir yaklaşımdır ve matematiksel problem çözme modeli, iç görüsel düşünme teorisi ve yaratıcılık araştırmalarının temellerine dayanır. Altı ardışık adımdan oluşan SPÇ modeli, hedef problemi tanımlama, kaynak problemi tanılama, hedef problemi çözme, orijinal problem oluşturma, orijinal problemi çözme ve değerlendirmeyi içerir. Bu çalışma, SPS modelinin teorik çerçevesini incelemekte ve R programlama dilinin öğretimindeki bir uygulamasını açıklamaktadır. Spesifik olarak makale, R yazılımını kullanarak matrisler içinde istenen öğeleri seçme sürecini öğretmede SPÇ modelinin kullanımını göstermektedir. SPÇ modelinin R öğretiminde uygulanması, alt adımlara odaklanılarak açıklanmış ve açıklayıcı örneklerle desteklenmiştir. Bu araştırmanın beklenen katkıları, R öğreten eğitimciler için içerik oluşturmayı zenginleştirmeyi ve farklılaştırmayı teşvik etmeyi kapsamaktadır. Bu çalışma, SPÇ modelinin R için bir öğretim aracı olarak uygulanabilirliğinin altını çizmektedir. Gelecekte yapılacak olan çalışmalarda bu model R öğretiminin farklı konularında kullanılabilir, SPÇ ile yapılan R öğretiminin etkililiği incelenebilir. CR - Ankara University. (2024, May 12). Master Program. Ankara University Directorate of Information Technologies. http://olcme.education.ankara.edu.tr/en/master-program/ CR - Bal-Sezerel, B., & Sak, U. (2013). The selective problem solving model (SPS) and its social validity in solving mathematical problems. The International Journal of Creativity and Problem Solving, 23(1), 71-87. CR - Chambers, J. M. (2009). Facets of R. The R Journal, 1(1), 5. https://doi.org/10.32614/rj-2009-008 CR - Culpepper, S. A., & Aguinis, H. (2010). R is for revolution. Organizational Research Methods, 14(4), 735-740. https://doi.org/10.1177/1094428109355485 CR - Davidson, J. E., & Sternberg, R. J. (1984). The role of insight in intellectual giftedness. Gifted Child Quarterly, 28(2), 58-64. https://doi.org/10.1177/001698628402800203 CR - Endardini, U. (2017). Pengaruh model pembelajaran selective problem solving (SPS) terhadap kemampuan higher order thinking skill dan disposisi matematika [The effect of the selective problem solving (SPS) learning model on higher order thinking skills and mathematical disposition][Unpublished master's dissertation]. Fakultas Ilmu Tarbiyah dan Keguruan [Faculty of Education and Teacher Training]. CR - Gazi University. (2024, May 12). Courses. Gazi University Directorate of Information. http://gef-egitimbilimleri-olcmedegerlendirme.gazi.edu.tr/view/page/77487 CR - Guilford, J. P. (1975). Creativity: A quarter century of progress. In I. A. Taylor & J. W. Getzels (Eds.), Perspectives in creativity (pp. 37–59). Aldine. CR - Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition,15, 332-340. https://doi.org/10.3758/BF03197035 CR - Karabacak, F., & Kirişçi, N. (2019). A comparison of gifted and non-gifted students’ satisfaction about the use of selective problem-solving model in mathematics. Turkish Journal of Giftedness and Education, 9 (2), 131-144. CR - Kılıç, A., & Ayas, M. B. (2017). Fen bilimlerinde analojik ve seçici düşünme: Seçici problem çözme modelinin fen bilimlerine uyarlanması [Analogical and selective thinking in science: Adapting the selective problem solving model to science]. Turkish Journal of Giftedness and Education, 7(2), 127-140. CR - Kirişçi, N. (2021). Yaratıcı problem çözme sürecinde analojik ve seçici düşünme: seçici problem çözme modelinin matematik eğitiminde uygulama örneği [Analogical and selective thinking in the creative problem solving process: an application example of the selective problem solving model in mathematics education]. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi [MSKU Journal of Education], 8(1), 72-84. https://doi.org/10.21666/muefd.755133 CR - Kirisci, N., Sak, U., & Karabacak, F. (2020). The effectiveness of the selective problem solving model on students’ mathematical creativity: A Solomon four-group research. Thinking Skills and Creativity, 38, 100719. https://doi.org/10.1016/j.tsc.2020.100719 CR - Manah, N. K., Isnarto, I., & Wijayanti, K. (2017). Analisis kemampuan pemecahan masalah matematika siswa berdasarkan tahapan Polya pada model pembelajaranselective problem solving [Analysis of mathematical problem solving ability based on student learning stages Polya on selective problem solving model]. Unnes Journal of Mathematics Education, 6(1), 19-26. https://doi.org/10.15294/ujme.v6i1.10855 CR - Pambudiarso, R. B., Mariani, S., & Prabowo, A. (2016). Komparasi kemampuan pemecahan masalah materi geometri antara model SPS dan model sps dengan hands on activity [Comparison of problem-solving abilities in geometry between the SPS model and the SPS model with hands-on activities]. Kreano, Jurnal Matematika Kreatif-Inovatif [Kreano, Journal of Creative-Innovative Mathematics], 7(1), 1-9. https://doi.org/10.15294/kreano.v7i1.4739 CR - Polya, G. (1957). How to solve it. (2nd ed.). Princeton University Press. CR - Pravilovic, S. (2013). R language in data mining techniques and statistics. American Journal of Software Engineering and Applications, 2(1), 7-12. https://doi.org/10.11648/j.ajsea.20130201.12 CR - Runco, M. A. (2006). Creativity theories and themes: Research, development, and practice. CA: Academic Press. CR - Sak, U. (2011). Selective problem solving (SPS): A model for teaching creative problem solving. Gifted Education International, 27(3), 349-357. https://doi.org/10.1177/026142941102700310 CR - Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28. CR - Torrance, E. P. (1967). The Minnesota studies of creative behavior: National and international extensions. Journal of Creative Behavior, 1(2), 137–154. https://doi.org/10.1002/j.2162-6057.1967.tb00021.x CR - Widiyanto, E., Isnarto, I., & Nur Cahyono, A. (2022). Mathematical problem solving ability of vocational school students reviewed from self regulated learning in selective problem solving (SPS) assisted learning management system (LMS) learning. Unnes Journal of Mathematics Education Research, 11(2), 171-180. CR - Zaenuri, Z., Nastiti, P. A., & Suhito, S. (2019). Mathematical creative thinking ability based on students’ characteristics of thinking style through selective problem solving learning model with ethnomatematics nuanced. Unnes Journal of Mathematics Education, 8(1), 49-57. https://doi.org/10.15294/ujme.v8i1.29192 UR - https://doi.org/10.53444/deubefd.1515755 L1 - https://dergipark.org.tr/tr/download/article-file/4068702 ER -