TY - JOUR T1 - Soil Temperature Prediction for Konya, Türkiye: Machine Learning Approaches AU - Kumaş, Kazım AU - Akyüz, Ali Özhan PY - 2024 DA - December Y2 - 2024 JF - Uluslararası Çevresel Eğilimler Dergisi JO - IJENT PB - Muhammed Kamil ÖDEN WT - DergiPark SN - 2602-4160 SP - 76 EP - 88 VL - 8 IS - 2 LA - en AB - Soil temperature is a critical parameter for agriculture meteorology applications. Although highly accurate, direct measurement may not be practical over large areas. The measurement process can also be costly and time-consuming. On the other hand, variables such as surface and soil properties that affect soil temperature can make it difficult to predict with physical models. Machine learning methods can overcome various limitations and predict targeted variables using complex non-linear relationships in the data distribution. For this purpose, it is used in many fields. Machine learning approaches are sensitive to input data and require many training data. This paper studied 5, 10, 20, and 50 cm soil temperature values of Konya province between 1960 and 2ied using machine learning algorithms (k-nearest neighbors, adaptive boosting, gradient boosting, light gradient boosting machine (LGBM)). The models were trained using data from 1960 to 2017, and the years 2019, 2020, and 2021 were predicted. In line with the successful results achieved, these models were used to predict the years 2022, 2023, 2024, and 2025. KW - : Konya KW - Machine Learning KW - Prediction KW - Soil Temperature CR - [1] Heinze, J., Gensch, S., Weber, E., & Joshi, J. 2017. Soil temperature modifies effects of soil biota on plant growth. Journal of Plant Ecology, 10(5), 808-821. CR - [2] Sharma, P. K., & Kumar, S. 2023. Soil Temperature and Plant Growth. In Soil Physical Environment and Plant Growth: Evaluation and Management (pp. 175-204). Cham: Springer International Publishing. CR - [3] Costa, J. M., Egipto, R., Aguiar, F. C., Marques, P., Nogales, A., & Madeira, M. 2023. The role of soil temperature in mediterranean vineyards in a climate change context. Frontiers in Plant Science, 14, 1145137. CR - [4] Ribeiro Filho, J. C., Andrade, E. M. D., Guerreiro, M. S., Palácio, H. A. D. Q., & Brasil, J. B. 2023. Soil–Water–Atmosphere Effects on Soil Crack Characteristics under Field Conditions in a Semiarid Climate. Hydrology, 10(4), 83. CR - [5] Xu, S., Nowamooz, H., Lai, J., & Liu, H. 2023. Mechanism, influencing factors and research methods for soil desiccation cracking: a review. European Journal of Environmental and Civil Engineering, 27(10), 3091-3115. CR - [6] Jabbarzadeh, M., Sadeghi, H., Tourchi, S., & Darzi, A. G. 2024. Thermo-hydraulic analysis of desiccation cracked soil strata considering ground temperature and moisture dynamics under the influence of soil-atmosphere interactions. Geomechanics for Energy and the Environment, 38, 100558. CR - [7] Ozsoy, A., & Yildirim, R. 2018. The performance of ground source heat pipes at low constant source temperatures. International journal of green energy, 15(11), 641-650. CR - [8] Ozsoy, A., & Yildirim, R. 2016. Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey's climatic conditions. Cold Regions Science and Technology, 125, 65-71. CR - [9] Sungur, C., & Altun, A. A. 2010. Konya Bölgesindeki Don Olaylarına Karşı Mistleme Sisteminin Yapay Sinir Ağları İle Modellenmesi. Selcuk Journal of Agriculture & Food Sciences/Selcuk Tarim ve Gida Bilimleri Dergisi, 24(4). CR - [10] Osmanlı, N., & Karakayacı, Ö. 2023. Ekonomik Coğrafya Odağında Kırsalı Yeniden Düşünmek: Konya Örneği. Konya Sanat, (6), 195-215. CR - [11] Orhan, O., Haghshenas Haghighi, M., Demir, V., Gökkaya, E., Gutiérrez, F., & Al-Halbouni, D. (2023). Spatial and Temporal Patterns of Land Subsidence and Sinkhole Occurrence in the Konya Endorheic Basin, Turkey. Geosciences, 14(1), 5. CR - [12] Sarı, F., & Yalcin, M. 2023. Maximum entropy model-based spatial sinkhole occurrence prediction in Karapınar, Turkey. Kuwait Journal of Science, 50(1B). CR - [13] Bayrak, S., & Şeflek, A. Y. 2023. General Characteristics of Konya Agricultural Machinery Manufacturing Industry. Selcuk Journal of Agriculture and Food Sciences, 37(3), 531-545. CR - [14] Fan, Y., Wang, X., Funk, T., Rashid, I., Herman, B., Bompoti, N., ... & Li, B. 2022. A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives. Environmental Science & Technology, 56(19), 13546-13564. CR - [15] Basso, B., & Liu, L. 2019. Seasonal crop yield forecast: Methods, applications, and accuracies. advances in agronomy, 154, 201-255. CR - [16] Sharma, P. K., & Kumar, S. 2023. Soil Temperature and Plant Growth. In Soil Physical Environment and Plant Growth: Evaluation and Management (pp. 175-204). Cham: Springer International Publishing. CR - [17] Costa, C. A., Guiné, R. P., Costa, D. V., Correia, H. E., & Nave, A. 2023. Pest control in organic farming. In Advances in Resting-state Functional MRI (pp. 111-179). Woodhead Publishing. CR - [18] Araújo, S. O., Peres, R. S., Ramalho, J. C., Lidon, F., & Barata, J. 2023. Machine learning applications in agriculture: current trends, challenges, and future perspectives. Agronomy, 13(12), 2976. CR - [19] Folorunso, O., Ojo, O., Busari, M., Adebayo, M., Joshua, A., Folorunso, D., ... & Olabanjo, O. 2023. Exploring machine learning models for soil nutrient properties prediction: A systematic review. Big Data and Cognitive Computing, 7(2), 113. CR - [20] Bilgili, M., Şimşek, E., & Şahin, B. 2010. Ege Bölgesindeki Toprak Sıcaklıklarının Yapay Sinir Ağları Yöntemi İle Belirlenmesi. Isı Bilimi ve Tekniği Dergisi, 30(1), 121-132. UR - https://dergipark.org.tr/tr/pub/ijent/issue//1527578 L1 - https://dergipark.org.tr/tr/download/article-file/4119808 ER -