TY - JOUR T1 - Hydrogel Balls Developed for Use in the Detection of Heavy Metals in Wastewater TT - Atık Sularda Bulunan Ağır Metallerin Tespitinde Kullanılmak Üzere Geliştirilmiş Hidrojel Toplar AU - Çapan, Muhammed Ertuğrul AU - Cingöz, Ebru PY - 2025 DA - April Y2 - 2024 DO - 10.53433/yyufbed.1537452 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYUFBED PB - Van Yüzüncü Yıl Üniversitesi WT - DergiPark SN - 1300-5413 SP - 156 EP - 171 VL - 30 IS - 1 LA - en AB - The study highlights the development of hydrogel beads for the detection of Nickel (Ni(II)) and Chromium (Cr(VI)) in industrial wastewater, providing an innovative solution to heavy metal pollution in a cost-effective and environmentally friendly manner. The beads change color when exposed to metals, making detection fast and simple. This technique makes a significant contribution to occupational health and safety by providing real-time detection of harmful heavy metals, thereby reducing the risk of exposure to workers. Additionally, the hydrogel beads aim to protect both worker health and surrounding ecosystems by helping industries meet environmental standards. Key findings include detection limits of 2.5 mg/mL for nickel and 1 mg/mL for chromium, and color changes stabilizing within 10 min. The hydrogels exhibited excellent swelling behavior with equilibrium swelling ratios of 72.65% for nickel and 64.18% for chromium, providing high efficiency in moisture absorption and retention. These features, combined with their ability to function without pretreatment or pH adjustment, offer an accessible and effective solution for managing metal pollution in industrial environments. Overall, the hydrogel beads demonstrated a success rate of 90.56% for nickel and 91.60% for chromium in detecting and measuring metal ions, providing an accessible and effective method for managing metal contamination in industrial environments while protecting both worker health and environmental integrity. KW - Colorimetric analysis KW - Heavy metal KW - Hydrogel KW - Occupational health and safety N2 - Çalışma, endüstriyel atık sularda Nikel (Ni(II)) ve Krom (Cr(VI)) tespiti için hidrojel boncuklarının geliştirilmesini vurgulayarak, ağır metal kirliliğine uygun maliyetli ve çevre dostu bir şekilde yenilikçi bir çözüm sunmaktadır. Boncuklar metallere maruz kaldığında renk değiştirerek tespiti hızlı ve basit hale getirmektedir. Bu teknik, zararlı ağır metallerin gerçek zamanlı tespitini sağlayarak iş sağlığı ve güvenliğine önemli bir katkı sağlamaktadır ve böylece çalışanların maruz kalma risklerini azaltmaktadır. Ek olarak, hidrojel toplar endüstrilerin çevre standartlarını karşılamasına yardımcı olarak hem çalışan sağlığını hem de çevre ekosistemlerini korumayı hedeflemektedir. Ana bulgular arasında nikel için 2,5 mg/mL ve krom için 1 mg/mL'lik tespit limitleri ve renk değişimlerinin 10 dakika içinde sabitlenmesi yer almaktadır. Hidrojeller, nikel için %72,65 ve krom için %64,18'lik denge şişme oranlarıyla mükemmel şişme davranışı göstererek nem emilimi ve tutulmasında yüksek verimlilik sağlamıştır.. Bu özellikler, ön işlem veya pH ayarlaması olmadan işlev görme yetenekleriyle birleştiğinde, endüstriyel ortamlarda metal kontaminasyonunu yönetmek için erişilebilir ve etkili bir çözüm sunmaktadır. Genel olarak hidrojel boncuklar, metal iyonlarını tespit etme ve ölçmede nikel için %90,56, krom için %91,60 başarı yüzdesi sergileyerek hem işçi sağlığını hem de çevresel bütünlüğü koruyarak endüstriyel ortamlarda metal kirliliğini yönetmek için erişilebilir ve etkili bir yöntem sunmaktadır. CR - Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905 CR - Ali, Z., Ullah, R., Tuzen, M., Ullah, S., Rahim, A., & Saleh, T. A. (2023). Colorimetric sensing of heavy metals on metal-doped metal oxide nanocomposites: A review. Trends in Environmental Analytical Chemistry, 37, e00187. https://doi.org/10.1016/j.teac.2022.e00187 CR - Arbona, V., Iglesias, D. J., Jacas, J., Primo-Millo, E., Talon, M., & Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270(1), 73–82. https://doi.org/10.1007/s11104-004-1160-0 CR - Baralkiewicz, D., Gramowska, H., Hanc, A., & Krzyzaniak, I. (2007). A comparison of ICP-OES and ICP-MS in the determination of elements in lake water. Atomic Spectroscopy-Norwalk Connecticut, 28(5), 164. CR - Chen, M., Wang, W., Fang, J., Guo, P., Liu, X., Li, G., Li, Z., Wang, X., Li, J., & Lei, K. (2023). Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. International Journal of Biological Macromolecules, 241, 124496. https://doi.org/10.1016/j.ijbiomac.2023.124496 CR - Dolbow, J., Fried, E., & Ji, H. (2004). Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids, 52(1), 51–84. https://doi.org/10.1016/s0022-5096(03)00091-7 CR - Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment, 905, 167242. https://doi.org/10.1016/j.scitotenv.2023.167242 CR - Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. U. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1970. https://doi.org/10.3390/nano10101970 CR - Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P. T., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322-337. https://doi.org/10.1016/j.biotechadv.2011.01.005 CR - Juang, R.-S., & Shiau, R.-C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165(2), 159-167. https://doi.org/10.1016/s0376-7388(99)00235-5 CR - Kopecek, J. (2002). Polymer chemistry: Swell gals. Nature, 417(6888), 388-391. https://doi.org/10.1038/417388a CR - Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A review. Polymer-Plastics Technology and Engineering, 50(14), 1475-1486. https://doi.org/10.1080/03602559.2011.593082 CR - Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869-1880. https://doi.org/10.1021/cr000108x CR - Li, G., Du, Y., Tao, Y., Deng, H., Luo, X., & Yang, J. (2010). Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property, and adsorption of methyl orange. Carbohydrate Polymers, 82(3), 706-713. https://doi.org/10.1016/j.carbpol.2010.05.040 CR - Li, C. P., Weng, M. C., & Huang, S. L. (2020). Preparation and characterization of pH-sensitive chitosan/3-glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels by sol-gel method. Polymers, 12(6), 1326. https://doi.org/10.3390/polym12061326 CR - Li, M., Yang, M., Liu, B., Guo, H., Wang, H., Li, X., Wang, L., & James, T. D. (2022). Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chemical Engineering Journal, 431(3), 134245. https://doi.org/10.1016/j.cej.2021.134245 CR - Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4 CR - Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64(1), 49-60. https://doi.org/10.1016/j.addr.2012.09.024 CR - Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R., Kim, J. T., Siengchin, S., & Lee, J. (2024). Recent advances in cellulose-and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydrate Polymers, 323, 121339. https://doi.org/10.1016/j.carbpol.2023.121339 CR - Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of The Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367 CR - Wysocka, I. (2021). Determination of rare earth elements concentrations in natural waters–A review of ICP-MS measurement approaches. Talanta, 221, 121636. https://doi.org/10.1016/j.talanta.2020.121636 CR - Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances, 10(65), 39722-39730. https://doi.org/10.1039/D0RA04316H CR - Zohuriaan‐Mehr, M. J., Pourjavadi, A., Salimi, H., & Kurdtabar, M. (2009). Protein‐and homo poly (amino acid)‐based hydrogels with super‐swelling properties. Polymers for Advanced Technologies, 20(8), 655-671. https://doi.org/10.1002/pat.1395 UR - https://doi.org/10.53433/yyufbed.1537452 L1 - https://dergipark.org.tr/tr/download/article-file/4163671 ER -