TY - JOUR T1 - Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis TT - Poliol Sentezinde Metal Tuzlarının Gümüş Nanotel Morfolojisi Üzerindeki Etkisi AU - Ertuş, Emre Burak AU - Karasakal, Mücahit AU - Demirel, İrem Sena PY - 2025 DA - August Y2 - 2025 JF - Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi JO - NEU Fen Muh Bil Der PB - Necmettin Erbakan Üniversitesi WT - DergiPark SN - 2667-7989 SP - 322 EP - 330 VL - 7 IS - 2 LA - en AB - The polyol method has gained significant attention for synthesizing Silver nanowires (AgNWs), offering a straightforward, cost-effective, and versatile approach to producing high-quality nanowires. In polyol method, the choice of metal salts performs a crucial function in determining the properties of the final AgNW product. This research specifically explores the influence of different metal salts on the length and diameter of AgNWs synthesized through the polyol method. Each synthesis involved the use of two distinct types of salts, with NaCl being a constant component. Trace amounts of Iron(III) Nitrate (Fe(NO3)3), Copper(II) Chloride (CuCl2), and Potassium Bromide (KBr) were introduced in conjunction with NaCl. The morphology and dimensional distribution of the nanowires were analyzed using Field Emission Scanning Electron Microscopy, while X-ray Diffraction was applied to study the crystal structure of the nanoparticles. Notably, the utilization of KBr in the synthesis led to the production of AgNWs with the highest aspect ratio, resulting in nanowires measuring 6.2 ± 2.5 µm in length. Additionally, the synthesis assisted by CuCl2 revealed a substantial presence of other silver nanostructures, such as nanocubes and nanotriangles, alongside nanowires. KW - silver nanowires KW - polyol method KW - metal salts N2 - Poliol yöntemi, yüksek kaliteli gümüş nanotellerin (AgNWs) sentezi için basit, ekonomik ve çok yönlü bir yaklaşım sunmasıyla dikkat çekmektedir. Bu yöntemde, kullanılan metal tuzları, elde edilen AgNWs ürününün özelliklerini belirlemede önemli bir rol oynar. Bu araştırma, poliol yöntemiyle sentezlenen AgNWs uzunluğu ve çapı üzerinde farklı metal tuzlarının etkisini incelenmiştir. Her sentezde Sodyum Klorür (NaCl) sabit bir bileşen olarak kullanılmış ve buna ek olarak iki farklı tuz türü eklenmiştir. NaCl ile birlikte eser miktarda Demir (III) Nitrat (Fe(NO3)3), Bakır(II) Klorür (CuCl2) ve Potasyum Bromür (KBr) kullanılmıştır. Nanotellerin şekli ve boyut dağılımı Alan Emisyonlu Taramalı Elektron Mikroskobu ile analiz edilmiş, nanopartiküllerin kristal yapısı ise X-ışını Kırınımı ile incelenmiştir. KBr tuzu kullanılarak yapılan sentezlerde en yüksek boy/en oranına sahip AgNWs üretildiği görülmüş ve bu nanotellerin uzunluğu 6,2 ± 2,5 µm olarak ölçülmüştür. Ayrıca, CuCl2 tuzu kullanılarak yapılan sentezde, nanotellerin yanı sıra nanoküpler ve nanoüçgenler gibi diğer gümüş nanoyapılarının da önemli ölçüde oluştuğu gözlemlenmiştir. CR - P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications, Materials Science and Engineering: B. 223 (2017), 1-23. doi:10.1016/J.MSEB.2017.05.002. CR - J.J. Chen, S.L. Liu, H. Bin Wu, E. Sowade, R.R. Baumann, Y. Wang, F.Q. Gu, C.R.L. Liu, Z.S. Feng, Structural regulation of silver nanowires and their application in flexible electronic thin films, Materials & Design. 154 (2018), 266-274. doi:10.1016/J.MATDES.2018.05.018. CR - S.H. Kim, B.S. Choi, K. Kang, Y.S. Choi, S.I. Yang, Low temperature synthesis and growth mechanism of Ag nanowires, Journal of Alloys and Compounds. 433 (2007), 261-264. doi:10.1016/J.JALLCOM.2006.06.053. CR - M. Mazur, Electrochemically prepared silver nanoflakes and nanowires, Electrochemistry Communications. 6 (2004), 400-403. doi:10.1016/J.ELECOM.2004.02.011. CR - S. Berchmans, R.G. Nirmal, G. Prabaharan, S. Madhu, V. Yegnaraman, Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers, Journal of Colloid and Interface Science. 303 (2006), 604-610. doi:10.1016/J.JCIS.2006.07.060. CR - S. Fahad, H. Yu, L. Wang, Zain-ul-Abdin, M. Haroon, R.S. Ullah, A. Nazir, K. ur R. Naveed, T. Elshaarani, A. Khan, Recent progress in the synthesis of silver nanowires and their role as conducting materials, Journal of Materials Science. 54 (2019) 997-1035. doi:10.1007/S10853-018-2994-9. CR - A. Amirjani, P. Marashi, D.H. Fatmehsari, The effects of physicochemical parameters on the synthesis of silver nanowires via polyol method, International Nano Letters. 4 (2014), 1-5. doi:10.1007/S40089-014-0108-5. CR - Y. Sun, R.A. Graff, M.S. Strano, J.A. Rogers, Top-down fabrication of semiconductor nanowires with alternating structures along their longitudinal and transverse axes, Small. 1 (2005), 1052-1057. doi:10.1002/SMLL.200500094. CR - S. Sarisozen, N.A. Tertemiz, T.A. Arica, N. Polat, C. Kocabas, F.M. Balci, S. Balci, Transition metal salt promoted, green, and High‐Yield synthesis of silver nanowires for flexible transparent conductive electrodes, ChemistrySelect. 6 (2021), 12548-12554. doi:10.1002/SLCT.202103434. CR - E.G. Yamamoto, M.P. Dantas, G. Yamanishi, F.B. Soares, A. Urbano, S.A. Lourenço, C.E. Cava, Silver nanowire synthesis analyzing NaCl, CuCl2, and NaBr as halide salt with additional thermal, acid, and solvent post-treatments for transparent and flexible electrode applications, Applied Nanoscience (Switzerland). 12 (2022), 205-213. doi:10.1007/S13204-021-02305-5. CR - S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: An extensive parametric study, Crystal Growth and Design. 11 (2011), 4963-4969. doi:10.1021/CG200874G CR - S. Hemmati, M.T. Harris, D.P. Barkey, Polyol Silver Nanowire Synthesis and the Outlook for a Green Process, Journal of Nanomaterials. 2020 (2020), 9341983. doi:10.1155/2020/9341983. CR - A.A. Ashkarran, M. Derakhshi, The effect of FeCl3 in the shape control polyol synthesis of silver nanospheres and nanowires, Journal of Cluster Science. 26 (2015), 1901-1910. doi:10.1007/S10876-015-0887-5 CR - Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-Pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes, ACS Applied Materials and Interfaces. 9 (2017), 25465-25473. doi:10.1021/ACSAMI.7B07146 CR - F. Basarir, S. De, H. Daghigh Shirazi, J. Vapaavuori, Ultra-long silver nanowires prepared via hydrothermal synthesis enable efficient transparent heaters, Nanoscale Advances. 4 (2022), 4410-4417. doi:10.1039/D2NA00560C. CR - K. Zhang, Y. Du, S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications, Organic Electronics. 26 (2015), 380-385. doi:10.1016/J.ORGEL.2015.08.008. CR - R.R. Da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y. Xia, Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method, ACS Nano. 10 (2016), 7892–7900. doi:10.1021/ACSNANO.6B03806 CR - L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano. 4 (2010), 2955-2963. doi:10.1021/NN1005232/ CR - L. José Andrés, M. Fe Menéndez, D. Gómez, A. Luisa Martínez, N. Bristow, J. Paul Kettle, A. Menéndez, B. Ruiz, Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells, Nanotechnology. 26 (2015), 1-9. doi:10.1088/0957-4484/26/26/265201. CR - K.E. Korte, S.E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, Journal of Materials Chemistry. 18 (2008), 437-441. doi:10.1039/B714072J. CR - S. Hemmati, D.P. Barkey, N. Gupta, R. Banfield, Synthesis and characterization of silver nanowire suspensions for printable conductive media, ECS Journal of Solid State Science and Technology. 4 (2015), 3075–3079. doi:10.1149/2.0121504jss. CR - H. Sim, S. Bok, B. Kim, M. Kim, G. Lim, S.M. Cho, B. Lim, Organic‐Stabilizer‐Free polyol synthesis of silver nanowires for electrode applications, Angewandte Chemie International Edition. 55 (2016), 11814–11818. doi:10.1002/anie.201604980. CR - B. Wiley, Y. Sun, Y. Xia, Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) Species, Langmuir. 21 (2005), 8077-8080. doi:10.1021/LA050887I CR - D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, Large-scale synthesis of silver nanowires via a solvothermal method, Journal of Materials Science: Materials in Electronics. 22 (2011), 6-13. doi:10.1007/S10854-010-0074-2. CR - S.D. Nusair, M.J. Almasaleekh, H. Abder-Rahman, M. Alkhatatbeh, Environmental exposure of humans to bromide in the Dead Sea area: Measurement of genotoxicy and apoptosis biomarkers, Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 837 (2019), 34-41. doi:10.1016/J.MRGENTOX.2018.09.006. CR - A. Chetan, P. Ami, Effects of Heavy Metals (Cu and Cd) on Growth of Leafy Vegetables- Spinacia oleracea and Amaranthus caudatus, International Research Journal of Environmental Sciences. 4 (2015), 63-69. CR - X. Ding, L. Song, Y. Han, Y. Wang, X. Tang, G. Cui, Z. Xu, Effects of Fe3+ on acute toxicity and regeneration of Planarian (Dugesia japonica) at different temperatures, BioMed Research International. 2019 (2019), 8591631. doi:10.1155/2019/8591631. CR - M. Akbayrak, Ü. Ata, T.N. Aslan, Influence of zinc doping ratio on silver nanoparticles synthesized via green method for enhanced catalytic degradation of toxic organic dyes, Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 7 (2025), 56-76. doi:10.47112/neufmbd.2025.75. UR - https://dergipark.org.tr/tr/pub/neufmbd/issue//1539093 L1 - https://dergipark.org.tr/tr/download/article-file/4171337 ER -