TY - JOUR T1 - VOLATİLİTEDE YAPISAL KIRILMALAR VE UZUN HAFIZA: AFRİKA ÖRNEĞİ TT - STRUCTURAL BREAKS IN VOLATILITY AND LONG MEMORY: AFRICAN EXAMPLE AU - Soykan, M. E. PY - 2025 DA - July Y2 - 2025 DO - 10.35408/comuybd.1551685 JF - Yönetim Bilimleri Dergisi PB - Çanakkale Onsekiz Mart Üniversitesi WT - DergiPark SN - 1304-5318 SP - 1474 EP - 1500 VL - 23 IS - 57 LA - tr AB - Bu çalışma MSCI Öncü Piyasalar Afrika Endeksi’nde uzun hafızanın bulunup bulunmadığını yapısal kırılmalar da dikkate alınarak analiz etmektedir. Bu endeks 12 Afrika ülkesini (Burkina Faso, Benin, Gine-Bissau, Fildişi Sahilleri, Kenya, Mauritius, Mali, Fas, Nijer, Senegal, Togo ve Tunus) içermektedir. 2008 ile 2023 yılları aralığını içeren veri kullanılmıştır. Veriler Refinitiv Eikon’dan temin edilmiştir. Umumiyetle bakıldığında geçmişte farklı sonuçların olduğu ve genel bir fikir birliğinin olmadığı görülmektedir. Bunun nedenleri olarak farklı tarih aralıklarının kullanılması, faydalanılan metotların ve varsayımların farklılığı ve incelenen ülkelerin farklı olması gösterilebilir. Yapılan analizde ilgili veri GARCH, A-GARCH, FIGARCH ve A-FIGARCH modelleri ile ele alınmış, minimum kriterleri yani en düşük HQ, SIC, Shibata ve AIC değerlerini sağlayan FIGARCH modelinin en uygun model olduğu ve bu modelde d parametresi 0 ile 0.5 arasında olduğundan (0.35) ilgili endekste uzun hafıza olduğu dolayısıyla bu piyasanın etkin olmadığı ifade edilebilir. Bu nedenle bu serideki varyans değerleri geçmiş değerlerden tahmin edilebilir. Adaptiv-FIGARCH modeli de maksimum ln(L) değeri verdiğinden ikinci sıradaki en uygun model olarak değerlendirilebilir. Bir başka ilginç sonuç olarak da yapısal kırılma dikkate alındığında A-FIGARCH modelinde literatürdeki sonuçlarla uyumlu olarak d, arch ve garch parametre değerlerinin biraz düştüğü fark edilmektedir. İlgili Afrika ülkeleri daha önce bu yöntemlerle topluca analiz edilmediğinden bu çalışmanın literatüre katkı sağlayacağına inanılmaktadır. Bu elde edilen sonuçlar ekseri akademisyenler, piyasa katılımcıları ve politika oluşturucular için volatilite serilerindeki uzun hafıza ve yapısal kırılma özelliklerini anlamak için ve gelecekteki volatiliteyi tahmin etmek için, piyasa etkinliğini test etmek için, finansal varlıkları fiyatlamak için, nicel yatırım stratejileri oluşturmak için ve piyasa riskini ölçmek için önem taşımaktadır. KW - Volatilite KW - Uzun Hafıza KW - Yapısal Kırılma KW - Afrika Endeksi KW - FIGARCH N2 - This paper examines whether there is long memory in MSCI Frontier Markets Africa Index by considering structural breaks. The data include 12 African countries (Burkina Faso, Benin, Guinea-Bissau, Ivory Coast, Kenya, Mauritius, Mali, Morocco, Niger, Senegal, Togo ve Tunisia). Data covering the period between 2008 and 2023 is utilised. Data is obtained from Refinitive Eikon. Generally it seems that there are different results in the past and there is no general consensus. The reasons for this may be the use of different date ranges, the differences in the methods and assumptions used, and the differences in the countries examined. In the analysis, the relevant data is handled with GARCH, A-GARCH, FIGARCH and A-FIGARCH models. The FIGARCH model, which provides the minimum criteria, that is, the lowest HQ, SIC, Shibata and AIC values, is the most suitable model and since the d parameter in this model between 0 and 0.5 (0.35), it can be stated that this market is not efficient because the relevant index has a long memory. Therefore, variance values in this series can be estimated from past values. Since the Adaptiv-FIGARCH model gives the maximum ln(L) value, it can be considered as the second most suitable model. Another interesting result is that when the structural break is taken into account, it is noticed that the d, arch and garch parameter values in the A-FIGARCH model decrease slightly, in line with the results in the literature. It is believed that this study will contribute to the literature since the relevant African countries have not been analyzed collectively with these methods before. These results are generally important and useful for academicians, market participants and policy makers to understand the long memory and structural break characteristics in volatility series and to predict future volatility, to test market efficiency, to price financial assets, to make quantitative investment strategies and to measure market risk. CR - Aawaar, G., Logogye, L ve Domeher, D. (2023). Equity return volatility in Africa’s stock markets: A dynamic panel approach, Cogent Economics & Finance, 11(2), 1-22. CR - Abel, A. (1988). Stock prices under time-varying dividend risk: an exact solution in an infinite-horizon general equilibrium model. Journal of Monetary Economics, 22(3), 375-392. CR - Adam, K., Marcet, A. ve Nicolini, J.P. (2008). Stock market volatility and learning. Working Paper No. 862, European Central Bank Working Paper Series. CR - Aggarwal, R., Inclan, C. ve Leal, R. (1999). Volatility in emerging stock markets. Journal of Financial and Quantitative Analysis, 34(1), 33-55. CR - Akgül, I. ve Sayyan, H. (2005). Forecasting Volatility in ISE-30 Stock Returns with Asymmetric Conditional Heteroscedasticity Models, Symposium of Traditional Finance, 05-07 Mayıs 2005, Marmara Üniversitesi Bankacılık ve Sigortacılık Yüksekokulu, İstanbul CR - Andersen, T.G. ve Bollerslev, T. (1997). Intraday Periodicity and Volatility Persistence in Financial Markets. Journal of Empirical Finance, 4(2-3), 115-158. CR - Bachelier, L. (1900). Theori de la speculation. Annales Scienifiques de L’Ecole Normale Superieure,17, 21-86. (Çev. Boness, A.J. (1964). The random character of stock market prices. Cambridge: MIT Press). CR - Baillie, R.T. ve Morana, C. (2009). Modelling long memory and structural breaks in conditional variances: an adaptive FIGARCH approach. Journal of Economic Dynamics and Control, 33(8), 1577-1592. CR - Baillie, R.T., Bollerslev, T. ve Mikkelsen, H.O. (1996). Fractionallly integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30. CR - Belkhouja, M. ve Boutahary, M. (2011). Modeling volatility with time-varying FIGARCH models, Economic Modelling, 28(3), 1106-1116. CR - Beltratti, A. ve Morana, C. (2006). Breaks and persistency: macroeonomic causes of stock market volatility. Journal of Econometrics, 131(1-2), 151-177. CR - Black, F. (1976). Studies of Stock Price Volatility Changes. American Statistical Association, 7(1), 177-181 CR - Bodart, V. ve Candelon, B. (2009). Evidence of Interdependence and Contagion Using a Frequency Domain Framework. Emerging Markets Review, 10(2), 140-150. CR - Bolgün, E. ve Akçay, B. (2005). Finansal Türevlerde Kullanıcı Kaynaklı Model Seçiminin Bilgi Asimetrisi Yoluyla Fiyatlama Süreçlerine Etkisi, Marmara Üniversitesi Geleneksel Finans Sempozyumu, İstanbul CR - Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307-328. CR - Bollerslev, T. ve Mikkelsen, H.O. (1996). Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151-184. CR - Brooks, R.D., Davidson, S. ve Faff, R.W. (1997). An examination of the effects of major political change on the stock market volatility: the South African experience. Journal of International Financial Markets, Institutions and Money, 7, 255-275. CR - Çevik, E.İ., Gunay, S., Diboğlu, S. ve Yıldırım, D.Ç. (2023). The impact of expected and unexpected events on Bitcoin price development: Introduction of futures market and COVID-19. Finance Research Letters, 54(C), 1-7. CR - Çevik, E.İ. ve Topaloğlu, G. (2014). Long memory and structural breaks on volatility: evidence from Borsa Istanbul. MPRA No: 71485, 1-11. CR - Charfeddine, L. ve Ajmi, A.N. (2013). The Tunisian stock market index volatility: Long memory vs. switching regime, Emerging Markets Review, 16, 170-182. CR - Chen, Y., Msofe, Z.A. ve Wang, C. (2024). Asymmetric dynamic spillover and time-frequency connectedness in the oil-stock nexus under COVID-19 shock: Evidence from African oil importers and exporters. Resources Policy,, 90(104849), 1-15. CR - Diebold, F. ve Inoue, A. (2001). Long memory and regime switching, Journal of Econometrics, 105(1), 131-159. CR - Diebold, F. ve Yilmaz, K. (2007). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171. CR - Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. CR - Engle, R.F. ve Rangel, J.F. (2008). The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. The Review of Financial Studies, 21(3), 1187-1222. CR - Gallant, A.R. (1984). The Fourier Flexible Form. American Journal of Agricultural Economics, 66(2), 204-208. CR - Gençyürek, A.G. (2024). Volatility Modeling and Spillover: The Turkish and Russian Stock Markets. Istanbul Business Research, 53(1), 81-101. CR - Gökçe, A. (2001). İstanbul Menkul Kıymetler Borsası Getirilerindeki Volatilitenin ARCH Teknikleri ile Ölçülmesi. Gazi Üniversitesi İ.İ.B.F. Dergisi, 3(1), 35-58. CR - Granger, C.W. ve Hyung, N. (2004). Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11(3), 399-421. CR - Günay, S. (2014). Fractal Structure of the Stock Markets of Leading Asian Countries. Journal of East Asian Economic Integration, 18(4), 367-394. CR - Hamilton, J. ve Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1-2), 307-333. CR - Han, Y.W. (2011). Structural Breaks and Long Memory Property in Korean Won Exchange Rates: Adaptive FIGARCH Model. Journal of East Asian Economic Integration, 15(2), 33-60. CR - Hassan, M.K., Maroney, N.C., El-Sady, H.M. ve Telfah, A. (2003). Country risk and stock market volatility, predictability, and diversification in the Middle East and Africa. Economic Systems, 27(1), 63-82. CR - Ho, K.Y., Shi, Y. ve Zhang, Z. (2013). How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches. The North American Journal of Economics and Finance, 26, 436-456. CR - Ismail, M.D., Audu, B. ve Tumala, M.M. (2016). Volatility forecasting with the wavelet transformation algorithm GARCH model: Evidence from African stock markets. The Journal of Finance and Data Science, 2(2), 125-135. CR - Kayahan, G. (2022). ARCH-GARCH Yaklaşımıyla Menkul Kıymet Piyasalarında Volatilite Tahmini: Borsa İstanbul Uygulaması, Yüksek Lisans Tezi, İstanbul Aydın Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul CR - King, D. ve Botha, F. (2015). Modelling stock return volatility dynamics in selected African markets. Economic Modelling, 45(C), 50-73. CR - Kökcen, A. (2010). Koşullu Varyans Modelleri: Finansal Zaman Serileri Üzerine Uygulama, Yüksek Lisans Tezi, Çukurova Üniversitesi, Sosyal Bilimler Enstitüsü, Adana CR - Laurent, S., ve Beine, M. (2001). Structural change and long memory in volatility: new evidence from daily exchange rates. Dunis, C., Timmermann, A., Moody, J. (Ed.), Developments in Forecast Combination and Portfolio Choice içinde, (s.159-177). Birleşik Krallık: Wiley Yayınları CR - Li, M.L. (2009). Change in volatility regimes and diversification in emerging stock markets. South African Journal of Economics, 77(1), 59-80. CR - Luo, Y. ve Huang, Y. (2019). Long memory or structural break? Empirical evidences from index volatility in stock market. China Finance Review International, 9(3), 324-337. https://doi.org/10.1108/ CFRI-11-2017-0222 CR - Martens, M., De Pooter, M. ve Van Dijk, D. (2004). Modeling and forecasting S&P 500 volatility: long memory, structural breaks and nonlinerity. Tinbergen Institute Discussion Paper. No.04-067/4 CR - Mazıbaş, M. (2004). İMKB Piyasalarındaki Volatilitenin Modellenmesi ve Öngörülmesi: Asimetrik GARCH Modelleri ile Bir Uygulama, Ankara, Bankacılık Düzenleme ve Denetleme Kurumu, 4-9. CR - Mikosch, T. ve Starica, C. (2004). Changes of structure in financial time series and the GARCH model. REVSTAT-Statistical Journal,2(1), 41-73. CR - Morana, C. ve Beltratti, A. (2004). Structural change and long-range dependence in volatility of exchange rates: either, neither or both? Journal of Empirical Finance, 11(5), 629-658. CR - Mudiangombe, B.M. ve Mwamba, J.W.M. (2023). Impacts of U.S. Stock Market Crash on South African Top Sector Indices, Volatility, and Market Linkages: Evidence of Copula-Based BEKK-GARCH Models. International Journal of Financial Studies, 11(77), 1-19. CR - Muhammad, K., Saleh, A., Bello,U.M., Tule, J.M., John, E.A., Edet, J.E.,Ohiaeri, I. ve Eneanya, C.N. (2024). Inflation and stock return volatility in selected African countries: A GARCH-MIDAS approach, Scientific African, 25(e02307), 1-9. CR - Nelson, D.B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica: Journal of the Econometric Society, 59(2), 347-370. CR - Ngene, G.M. ve Mungai, A.N. (2022). Stock returns, trading volume, and volatility: The case of African stock markets. International Review of Financial Analysis, 82(102176), 1-17. CR - Olsen, R.A. (1998). Behavioural finance and its implications for stock price volatility. Financial Analysts Journal, 54(2), 10-18. CR - Poterba, J.M. ve Summers, L.H. (1986). Reporting Errors and Labor Market Dynamics. Econometrica: Journal of the Econometric Society, 54(6), 1319-1338. CR - Ramasamy, R. ve Helmi, M.H.M. (2011). Chaotic Behavior of Financial Time Series-An Empirical Assessment. International Journal of Business and Social Science, 2(3), 77-83. CR - Ramchand, L. ve Susmel, R. (1998). Volatility and cross correlation across major stock markets. Journal of Empirical Finance, 5(4), 397-416. CR - Saadaoui, F. (2024). Segmented in multifractal detrended fluctuation analysis for assessing inefiiciency in North African stock markets. Chaos, Solitons and Fractals, 181(114652), 1-11. CR - Sanso, A., Arago, V. ve Carrion, J.L. (2004). Testing for Change in the Unconditional Variance of Financial Time Series. Revista De Economia Financiera, 4, 32-53. CR - Schwert, G.W. (1989). Why does stock market volatility change over time? The Journal of Finance, 44(5), 1115-1153. CR - Shi, Y. ve Ho, K.Y. (2015). Modeling high-frequency volatility with three-state FIGARCH models. Economic Modelling, 51, 473-483. CR - Shiller, R. (1987). The volatility of stock market prices. Science, 235(4784), 33-37. CR - Soykan, M.E. (2024). Volatilitenin Modellenmesi: Nasdaq 100 Endeksi Örneği. Uluslararası Ekonomi, İşletme ve Politika Dergisi, 8(1), 139-153. CR - Stentoft, L. (2005). Pricing american options when the underlying asset follows GARCH processes. Journal of Empricical Finance, 12(4), 576-611. CR - Tayefi, M. ve Ramanathan, T.V. (2012). An Overview of FIGARCH and Related Time Series Models. Austrian Journal of Statistics, 41(3), 175-196. CR - Taylor, S.J. (1986). Modelling Financial Time Series, New York: Wiley Yayınları CR - Tumala, M.M., Salisu, A.A. ve Gambo, A.I. (2023) Distengled oil shocks and stock market volatility in Nigeria and South Africa: A GARCH-MIDAS approach. Economic Analysis and Policy, 78, 707-717 CR - Velasquez, T. (2009). Chaos Theory and the Science of Fractals, and their Application in Risk Management. Yüksek Lisans Tezi, Copenhagen Business School, Danimarka CR - Verardi, V. ve Vermandele, C. (2018). Univariate and Multivariate Outlier Identification for Skewed or Heavy-Tailed Distributions. The Stata Journal, 18(3), 517-532. CR - Wang, P. ve Theobald, M. (2008). Regime-switching volatility of six East Asian emerging markets. Research in International Business and Finance, 22(3), 267-283. CR - www.msci.com (Erişim Tarihi: 06-08-2024). Link: www.msci.com/documents/ 10199/4dd589f6-6929-4ec7-a6ff-d40d5d882406 CR - Yalama, A. ve Celik, S. (2013). Real or spurious long memory characteristics of volatility: empirical evidence from an emerging market. Economic Modelling, 30, 67-72. CR - Yılmaz, Ö. (2006). Finansal Zaman Serilerinde Varyans Modellemesi, Yüksek Lisans Tezi, Mimarsinan Güzel Sanatlar Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul UR - https://doi.org/10.35408/comuybd.1551685 L1 - https://dergipark.org.tr/tr/download/article-file/4221371 ER -