TY - JOUR T1 - YAPAY ZEKA: HEMŞİRELİK ÖĞRENCİLERİNİN KAYGI VE TUTUMLARI TT - ARTİFİCİAL INTELLİGENCE: ANXİETY AND ATTİTUDES OF NURSİNG STUDENTS AU - Koraş Sözen, Kezban AU - Aydin, Beyza Nur PY - 2025 DA - July Y2 - 2025 JF - Journal of One Health Research JO - J One Health Res PB - Türkiye Aile Hekimliği Vakfı WT - DergiPark SN - 2980-0323 SP - 28 EP - 35 VL - 3 IS - 2 LA - tr AB - Amaç: Bu çalışmanın amacı, hemşirelik öğrencilerinin yapay zekâya yönelik kaygı ve tutumları arasındaki ilişkiyi belirlemekti. Yöntem: Tanımlayıcı ve ilişki arayıcı tipte tasarlanan araştırma bir üniversitenin sağlık bilimleri fakültesinde öğrenim gören ve çalışmaya dahil edilme kriterlerine uyan 312 hemşirelik bölümü öğrencisi ile yapıldı. Verilerin elde edilmesinde, tanımlayıcı özellikler formu, Yapay Zeka Kaygı Ölçeği (YZKÖ) ve Yapay Zekâya Yönelik Genel Tutum (YZTÖ) Ölçeği kullanıldı.Bulgular: Katılımcıların YZKÖ toplam puan ortalamasının (44.63±14.10) düşük düzeyde, YZTÖ toplam puan ortalamasının (67.38±11.73) yüksek düzeyde ve pozitif yönde (42.85±8.39) olduğu saptandı. Kadınları YZKÖ puan ortalamalarının (45.92±12.89) yüksek ve istatistiksel olarak anlamlı olduğu saptandı. Fen lisesi mezunu olan katılımcıların YZKÖ puan ortalamalarının (51.51±10.97) yüksek olduğu ve bu farkın istatistiksel olarak anlamlı olduğu belirlendi.Sonuç: Öğrencilerin yapay zekaya karşı tutumları ile yapay zekaya yönelik kaygıları arasındaki ilişkinin anlamsız olduğu tespit edildi. İleriye dönük farklı popülasyonlarda daha geniş kapsamlı çalışmaların yapılması önerilmektedir. KW - hemşirelik KW - kaygı KW - tutum KW - yapay zeka N2 - Background: The purpose of this study was to determine the relationship between nursing students' anxiety and attitudes towards artificial intelligence. Methods: The descriptive and correlational research was conducted with 312 nursing students who met the inclusion criteria at a university's faculty of health sciences. Data were collected using a demographic information form, the Artificial Intelligence Anxiety Scale (AIAS), and the General Attitude towards Artificial Intelligence (GAAIS) Scale. Results: It was found that the participants' average total score on the AIAS (44.63±14.10) was at a low level, while the average total score on the GAAIS (67.38±11.73) was high and positively oriented (42.85±8.39). Female students' average scores on the AIAS (45.92±12.89) were high and statistically significant. Participants who graduated from science high schools had higher AIAS scores (51.51±10.97), and this difference was statistically significant. Conclusion: The study determined that there was no significant relationship between students' attitudes towards artificial intelligence and their anxiety about it. Future studies with broader scopes in different populations are recommended. CR - 1. Kaya F, Aydin F, Schepman A, Rodway P, Yetisensoy O, Kaya MD. The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal of Human-Computer Interaction. 2020; 40(2): 497-514. https://doi.org/10.1080/10447318.2022.2151730 2. Gansser OA, Reich CS. A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application. Technology in Society. 2021;65. https://doi.org/ARTN 10153510.1016/j.techsoc.2021.101535 CR - 3. Zhang B, Dafoe A. (2019). Artificial intelligence: American attitudes and trends. SSRN. https://doi.org/10.2139/ssrn.3312874 CR - 4. Wang YY, Wang, YS. Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments. 2022; 30(4): 619-634. https://doi.org/10.1080/10494820.2019.1674887 5. Johnson DG, Verdicchio M. AI Anxiety. Journal of the Association for Information Science and Technology. 2017; 68(9): 2267-2270. https://doi.org/10.1002/asi.23867 CR - 6. Clarke V, Braun V. Thematic analysis. The Journal of Positive Psychology. 2017:12(3); 297-298. https://doi.org/10.1080/17439760.2016.1262613 CR - 7. Neumbe IM, Ssenyonga L, Soita DJ, Iramiot JS, Nekaka R. Attitudes and perceptions of undergraduate nursing students towards the nursing profession. Plos One. 2023; 18(7). https://doi.org/ARTN e028070010.1371/journal.pone.0280700 CR - 8. Acemoglu D, Restrepo P. Robots and Jobs: Evidence from us Labor Markets. National Bureau of Economic Research. 2017. https://www.nber.org/system/files/working_papers/w23285/w23285.pdf 9. Frey CB, Osborne MA. The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change. 2017; 114; 254-280. https://doi.org/10.1016/j.techfore.2016.08.019 CR - 10.Dwivedi YK, Hughes L, Ismagilova E, Aarts G, Coombs C, Crick T, Duan YQ, Dwivedi R, Edwards J, Eirug A, Galanos V, Ilavarasan PV, Janssen M, Jones P, Kar AK, Kizgin H, Kronemann B, Lal B, Lucini B., . . . Williams MD. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. 2021; 57. https://doi.org/ARTN 10199410.1016/j.ijinfomgt.2019.08.002 CR - 11.Schepman A, Rodway P. Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports. 2020:1. https://doi.org/ARTN10001410.1016/j.chbr.2020.100014 CR - 12.Doğaner A. The Approaches and Expectations of the Health Sciences Students towards Artificial Intelligence. Karya Journal of Health Science. 2021; 2(1): 5-11. CR - 13.Lukic A, Kudelic N, Anticevic V, Lazic-Mosler E, Gluncic V, Hren D, Lukic IK. First-year nursing students' attitudes towards artificial intelligence: Cross-sectional multi-center study. Nurse Education in Practice. 2023;71. https://doi.org/ARTN10373510.1016/j.nepr.2023.103735 CR - 14.Wang YM, Wei CL, Lin HH, Wang SC, Wang YS. What drives students' AI learning behavior: a perspective of AI anxiety. Interactive Learning Environments. 2024;32(24).2584-2600. https://doi.org/10.1080/10494820.2022.2153147 CR - 15.Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019:64;277-282. https://doi.org/10.1016/j.jocn.2019.03.001 CR - 16.Aktaş Reyhan F, Dağlı E. Ebelik Öğrencilerin Yapay Zekâ Kaygı Durumlarının Değerlendirilmesi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2023; 8(Special Issue): 290-296. https://doi.org/10.51754/cusbed.1286594 CR - 17.Filiz E, Güzel Ş, Şengül A. Sağlık Profesyonellerinin Yapay Zeka Kaygı Durumlarının İncelenmesi. Journal of Academic Value Studies, 2022;8(1): 47-55. http://dx.doi.org/10.29228/javs.57808 CR - 18.Filiz M, Karagöz, Y. Sağlık Çalışanlarının Mental İyi Oluş Düzeylerinin Yapay Zekâ Kaygısı Üzerindeki Etkisi. J Health Pro Res. 2024;6(2): 105-114. CR - 19.Akkaya B, Özkan A, ÖzkanH. Yapay zeka kaygı (YZK) ölçeği: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması. Alanya Akademik Bakış. 2021; 5(2):1125-1146. CR - 20.Yigit D, Acikgoz A. Evaluation of future nurses' knowledge, attitudes and anxiety levels about artificial intelligence applications. Journal of evaluation in clinical practice. Advance online publication. 2024. https://doi.org/10.1111/jep.14062 CR - 21.Bulut H, Kınoğlu NG, Karaduman B. The fear of artificial intelligence: dentists and the anxiety of the unknown. Journal of Advanced Research in Health Sciences 2024;7(1):55-60. https://doi.org/10.26650/JARHS2024-1302739 CR - 22.Ulukapı Yılmaz H, Yılmaz A. Dijital çağın potansiyel çalışanlarının yapay zekâ kaygılarının belirlenmesi. Business and Economics Research Journal. 2024; 15(2): 171-188. http://dx.doi.org/10.20409/berj.2024.440 23.Fietta V, Zecchinato F, Di Stasi B, Polato M, Monaro M. Dissociation between users’ explicit and implicit attitudes toward artificial intelligence: An experimental study. IEEE Transactions on Human-Machine Systems. 2022; 52(3): 481-489. https://doi.org/10.1109/THMS.2021.3125280 UR - https://dergipark.org.tr/tr/pub/onehealthjournal/issue//1561620 L1 - https://dergipark.org.tr/tr/download/article-file/4264714 ER -