TY - JOUR T1 - Prediction and Optimization of Tensile Strength Values of 3D Printed PLA Components with RSM, ANOVA and ANN Analysis AU - Kartal, Fuat AU - Kaptan, Arslan PY - 2025 DA - July Y2 - 2025 DO - 10.36222/ejt.1561857 JF - European Journal of Technique (EJT) JO - EJT PB - Hibetullah KILIÇ WT - DergiPark SN - 2536-5010 SP - 51 EP - 60 VL - 15 IS - 1 LA - en AB - This study evaluates the comparative effectiveness of Response Surface Methodology (RSM), Analysis of Variance (ANOVA), and Artificial Neural Networks (ANN) in predicting and optimizing the tensile strength of 3D-printed PLA components. Key process parameters—including layer thickness, infill density, print speed, temperature, and build orientation—were systematically varied to analyze their impact on tensile strength. The results indicate that RSM and ANOVA offer higher prediction accuracy compared to ANN, with lower deviation rates (0.65%, 0.18%, and 3.43% for RSM; 0.20%, 0.12%, and 3.25% for ANOVA) versus ANN (5.93%, 3.88%, and 6.26%). The analysis revealed that layer thickness plays the most significant role in tensile strength, followed by temperature, infill density, build orientation, and print speed. The optimal combination of parameters—0.20 mm layer thickness, 50% infill density, 50 mm/s print speed, 220°C nozzle temperature, and 90° build orientation—yielded a maximum tensile strength of 55.506 MPa. These findings highlight the importance of parameter optimization in improving the mechanical properties of FDM-printed components. The study provides valuable insights for enhancing the reliability and efficiency of additive manufacturing processes, paving the way for future research on hybrid modeling techniques and alternative material applications. KW - Response surface methodology KW - Analysis of variance KW - Tensile strength KW - Fused deposition modeling KW - 3D printing KW - PLA components KW - Artifical neural networks KW - Process optimization CR - [1] A.J. Sheoran, H. Kumar, “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research”. Mater. Today Proc., 2019, 10, 14. https://doi.org/10.1016/j.matpr.2019.11.296 CR - [2] A. Pandžić, D. Hodžić, E. Kadrić, “Experimental Investigation on Influence of Infill Density on Tensile Mechanical Properties of Different FDM 3D Printed Materials”. TEM Journal, 2021, 10(3). https://doi.org/10.18421/TEM103-25 CR - [3] V. Wankhede, D. Jagetiya, A. Joshi, R. Chaudhari, “Experimental investigation of FDM process parameters using Taguchi analysis”. Mater. Today Proc., 2019, 27, 2117–2120. https://doi.org/10.1016/j.matpr.2019.09.078 CR - [4] M. Algarni, S. Ghazali, “Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters”. Crystals, 2021, 11.8: 995. https://doi.org/10.3390/cryst11080995 CR - [5] A. Milovanović, A. Sedmak, A. Grbović, Z. Golubović, G. Mladenović, K. Čolić, M. Milošević, “Comparative analysis of printing parameters effect on mechanical properties of natural PLA and advanced PLA-X material”. Procedia Struct. Integr., 2020, 28, 1963–1968. https://doi.org/10.1016/j.prostr.2020.11.019 CR - [6] G.C. Onwubolu, F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”. Hindawi, 2014, 1–13. http://dx.doi.org/10.1155/2014/598531 CR - [7] H.B. Mamo, A.D. Tura, A.J. Santhos, N. Ashok, D.K. Rao, “Modeling and analysis of flexural strength with fuzzy logic technique for a fused deposition modeling ABS components”. Mater. Today Proc., 2022, 57, 768–774. https://doi.org/10.1016/j.matpr.2022.02.306 CR - [8] S. Wang, Y. Ma, Z. Deng, S. Zhang, J. Cai, “Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials”. Polym. Test., 2020, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483 CR - [9] J. Lluch-Cerezo, R. Benavente, M.D. Meseguer, S.C. Gutiérrez, “Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM)”. Procedia Manuf., 2019, 41, 890–897. https://doi.org/10.1016/j.promfg.2019.10.012 CR - [10] Y.G. Zhou, J.R. Zou, H.H. Wu, B.P. Xu, “Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile‐butadiene‐styrene composites”. Polymer Composites, 2019, 41(1), 60-72. https://doi.org/10.1002/pc.25345 CR - [11] A.W. Gebisa, H.G. Lemu, “Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085”. Procedia Manufacturing, 2019, 30, 331-338. https://doi.org/10.1016/j.promfg. 2019.02.047 CR - [12] K.I. Byberg, A.W. Gebisa, H.G. Lemu, “Mechanical properties of ULTEM 9085 material processed by fused deposition modeling”. Polymer Testing, 2018, 72, 335-347. https://doi.org/10.1016/j.polymertesting.2018.10.040 CR - [13] K.P. Motaparti, G. Taylor, M.C. Leu, K. Chandrashekhara, J. Castle, M. Matlack, “Experimental investigation of effects of build parameters on flexural properties in fused deposition modelling parts”. Virtual and Physical Prototyping, 2017, 12(3), 207-220. https://doi.org/10.1080/17452759.2017.1314117 CR - [14] K.J. Christiyan, U. Chandrasekhar, K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical roperties of 3D printed ABS composite”. In IOP conference series: materials science and engineering, IOP Publishing, 2016, 114, 1, 012109. https://doi.org/10.1088/1757-899X/114/1/012109 CR - [15] X. Zhou, S.J. Hsieh, C.C. Ting, “Modelling and estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library”. Virtual and Physical Prototyping, 2018, 13(3), 177-190.https://doi.org/10.1080/17452759.2018.1442681 CR - [16] A.W. Gebisa, H.G. Lemu, “Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment”. Materials, 2018, 11(4), 500. https://doi.org/10.3390/ma11040500 CR - [17] M.H. Hsueh, C.J. Lai, S.H. Wang, Y.S. Zeng, C.H. Hsieh, C.Y. Pan, W.C. Huang, “Effect of printing parameters on the thermal and mechanical properties of 3d-printed PLA and PETG, using fused deposition modeling”. Polymers, 2021.a, 13(11), 1758.https://doi.org/10.3390/polym13111758 CR - [18] E.U. Enemuoh, S. Duginski, C. Feyen, V.G. Menta, “Effect of process parameters on energy consumption, physical, and mechanical properties of fused deposition modeling”. Polymers, 2021, 13(15), 2406. https://doi.org/10.3390/polym13152406 CR - [19] M.H. Hsueh, C.J. Lai, K.Y. Liu, C.F. Chung, S.H. Wang, C.Y. Pan, Y.S. Zeng, “Effects of printing temperature and filling percentage on the mechanical behavior of fused deposition molding technology components for 3D printing”. Polymers, 2021.b, 13(17), 2910. https://doi.org/10.3390/polym13172910 CR - [20] C. Patil, P.D. Sonawane, M. Naik, D.G. Thakur, “Finite element analysis of flexural test of additively manufactured components fabricated by fused deposition modelling”. In AIP Conference Proceedings AIP Publishing, December, 2020, 2311, 1. https://doi.org/10.1063/ 5.0034306 CR - [21] R. Srinivasan, T. Pridhar, L.S. Ramprasath, N.S. Charan, W. Ruban, “Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM)”. Materials Today: Proceedings, 2020, 27, 1827-1832. https://doi.org/10.1016/j.matpr.2020.03.788 CR - [22] S. Deshwal, A. Kumar, D. Chhabra, “Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement”. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 189-199. https://doi.org/10.1016/j.cirpj.2020.05.009 CR - [23] A.D. Tura, H.G. Lemu, H.B. Mamo, “Experimental investigation and prediction of mechanical properties in a fused deposition modeling process”. Crystals, 2022, 12(6), 844. https://doi.org/10.3390/ cryst12060844 CR - [24] M.S. Saad, A. Mohd Nor, M.Z. Zakaria, M.E. Baharudin, W.S. Yusoff, “Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO”. Progress in Additive Manufacturing, 2021, 6, 143-154. https://doi.org/10.1007/s40964-020-00157-z CR - [25] J. Giri, P. Shahane, S. Jachak, R. Chadge, P. Giri, “Optimization of FDM process parameters for dual extruder 3d printer using artificial neural network”. Materials Today: Proceedings, 2021, 43, 3242-3249. https://doi.org/10.1016/j.matpr.2021.01.899 CR - [26] Y.G. Zhou, B. Su, L.S. Turng, “Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling”. Rapid Prototyping Journal, 2017, 23(5), 869-880. https://doi.org/10.1108/RPJ-12-2015-0189 UR - https://doi.org/10.36222/ejt.1561857 L1 - https://dergipark.org.tr/tr/download/article-file/4265706 ER -