TY - JOUR T1 - Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications AU - Demir, Ahmet AU - Musatat, Ahmad Badreddin AU - Kip, Şule Zeynep PY - 2025 DA - June Y2 - 2024 DO - 10.18466/cbayarfbe.1562667 JF - Celal Bayar University Journal of Science JO - CBUJOS PB - Manisa Celal Bayar Üniversitesi WT - DergiPark SN - 1305-130X SP - 72 EP - 79 VL - 21 IS - 2 LA - en AB - This study investigates the dielectric anisotropy and electrical modulus-impedance properties of a PCBM/E7 composite material for organic electronic devices applications. The research examines a specially fabricated cell combining nematic liquid crystal E7 with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) semiconductor. Through a comprehensive analysis of dielectric anisotropy, AC conductivity, electrical modulus, and impedance characteristics under varying frequencies and applied voltages (-6.0V to +6.0V), the study reveals distinct behavioral regions and multiple relaxation processes. Key findings include frequency-dependent dielectric anisotropy transitions, enhanced AC conductivity at higher frequencies and voltages, and voltage-modulated impedance characteristics. The observed dual-peak phase angle response suggests multiple relaxation mechanisms, indicating the composite's potential for voltage-tunable electrical properties in advanced optoelectronic applications. KW - AC conductivity KW - dielectric anisotropy KW - electrical modulus KW - impedance spectroscopy KW - liquid crystal KW - E7-PCBM composite CR - [1]. Judele, R., Laschat, S., Baro, A., Nimtz, M. 2006. Gallic esters of 4,5-dinitrocatechol as potential building blocks for thermotropic liquid crystals. Tetrahedron; 62(41): 9681–9687. CR - [2]. Chavda, V.P., Shah, K.N., Soni, S., Tripathi, M., Bhargava, S., Thakur, M., Parikh, P., Vora, L.K., Thakor, P., Makwana, M., Kapadia, N. 2023. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. International Journal of Pharmaceutics; 647: 123546. CR - [3]. Takikawa, Y., Kaneko, K., Odani, S., Ikemura, T., Iwata, M. 2020. Dielectric anisotropy in PCPB/MBBA mixtures showing the dual frequency characteristic. Japanese Journal of Applied Physics; 59(SD): SDDB05. CR - [4]. Sasani Ghamsari, M., Carlescu, I. (Eds.). 2020. Liquid Crystals and Display Technology. IntechOpen. CR - [5]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2005. Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds. Solid State Phenomena; 106: 145–148. CR - [6]. Khoo, I.C., Chen, C.W., Ho, T.J. 2016. Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C_60. Optics Letters; 41(1): 123. CR - [7]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2010. Photorefractive and photoconductive features of the nanostructured materials. International Journal of Modern Physics B; 24(06n07): 695–702. CR - [8]. Zhang, Y., Yao, F., Pei, Y., Sun, X. 2009. High-diffraction-efficiency holographic gratings in C60-doped nematics. Applied Optics; 48(33): 6506–6510. CR - [9]. Okutan, M., San, S.E., Basaran, E., Yakuphanoglu, F. 2005. Determination of phase transition from nematic to isotropic state in carbon nano-balls doped nematic liquid crystals by electrical conductivity-dielectric measurements. Physics Letters A; 339(6): 461–465. CR - [10]. Ibragimov, T.D. 2021. Effect of fullerenes C60 on dielectric relaxation, electric conductivity, and electro-optic properties of 4-cyano-4′-pentylbiphenyl. Fullerenes, Nanotubes and Carbon Nanostructures; 29(6): 457–463. CR - [11]. Ibragimov, T.D. 2021. Influence of fullerenes C60 and single-walled carbon nanotubes on the Carr–Helfrich effect in nematic liquid crystal. Optik; 237: 166768. CR - [12]. Lee, W., Wang, C.Y., Shih, Y.C. 2004. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Applied Physics Letters; 85(4): 513–515. CR - [13]. Okutan, M., San, S.E., Köysal, O., Şentürk, E. 2010. The electrical properties of a fullerene and C.I. Acid Red 2 (methyl red) doped E7 nematic liquid crystal. Dyes and Pigments; 84(3): 209–212. CR - [14]. Ibragimov, T.D., Imamaliyev, A.R., Ganizade, G.F. 2020. The threshold voltage, dielectric and conductivity properties of C60-doped smectic A liquid crystal. Fullerenes, Nanotubes and Carbon Nanostructures; 28(6): 509–514. CR - [15]. Demir, A., Musatat, A.B. 2024. Evaluation of industrial Poly(tert-butyl acrylate) insulated A p-channel organic field-effect transistor (PtBA-p-OFET). Düzce Üniversitesi Bilim ve Teknoloji Dergisi; 12(3): 1762–1770. CR - [16]. Sheraw, C.D., Zhou, L., Huang, J.R., Gleskova, H., Wagner, S., Jackson, T.N. 2002. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied Physics Letters; 80(6): 1088–1090. CR - [17]. Rogers, J.A., Bao, Z., Makhija, A., Feng, Y., Zhang, Y., Mahajan, A., Veroff, R., Jones, T., MacLean, J., Schlittler, R., Whitesides, G.M. 2001. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences; 98(9): 4835–4840. CR - [18]. Musatat, A.B., Atahan, A., Aksu, M., Zengin, M. 2022. Employing of 2-Acetylpyridine based chalcone as Hg2+ sensing material: Experimental and theoretical examination. Düzce University Journal of Science and Technology Research; 10(4): 2133–2143. CR - [19]. Mas-Torrent, M., Rovira, C. 2011. Role of molecular order and solid-state structure in organic field-effect transistors. Chemical Reviews; 111(8): 4833–4856. CR - [20]. Walser, M.P., Kalb, W.L., Mathis, T., Batlogg, B. 2009. Low-voltage organic transistors and inverters with ultrathin fluoropolymer gate dielectric. Applied Physics Letters; 95(23): 233301. CR - [21]. Fang, X., Wei, Z., Qi, L., Chen, J., Wang, C., Ge, L., Yan, F. 2021. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Advanced Functional Materials; 31(21): 2100237. CR - [22]. Gencel, O., Musatat, A.B., Demir, A., Tozluoğlu, A., Tutuş, A., Kıllı, A., Fidan, H., Çavuş, K.F. Transforming industrial byproduct to eco-friendly functional material: Ground-granulated blast furnace slag reinforced paper for renewable energy storage. Science of the Total Environment; 176616. CR - [23]. Kip, Ş., Gegin, K., Demir, A., Köysal, O., Öztürk, S., Kösemen, A. 2023. The novel n-channel liquid crystal organic field effect transistor (LC-n-OFET): A promising technology for low-power electronics. Organic Electronics; 106965. CR - [24]. Katariya-Jain, A., Deshmukh, R.R. 2022. Effects of dye doping on electro-optical, thermo-electro-optical, and dielectric properties of polymer dispersed liquid crystal films. Journal of Physics and Chemistry of Solids; 160: 110363. CR - [25]. Mi, X.D., Yang, D.K. 1998. Capillary filling of nematic liquid crystals. Physical Review E; 58(2): 1992–2000. CR - [26]. Lueder, E. 2010. Liquid Crystal Displays: Addressing Schemes and Electro‐Optical Effects. Wiley. CR - [27]. Kocakülah, G. 2023. The role of rubrene concentration on dielectric parameters of nematic liquid crystal. Hittite Journal of Science and Engineering; 10(3): 193–199. CR - [28]. Subaşı, A., Emiroğlu, M., Demir, A. 2023. Polarization and relaxation mechanisms in glass fiber-reinforced LED-cured polyester composites incorporating graphene nanotubes. Materials Science and Engineering B; 295: 116614. CR - [29]. Demir, A., Köysal, O. 2016. Investigation of photo-induced change of electro-optical performance in a liquid crystal-organic field effect transistor (LC-OFET). Philosophical Magazine; 96(22): 2362–2371. UR - https://doi.org/10.18466/cbayarfbe.1562667 L1 - https://dergipark.org.tr/tr/download/article-file/4268913 ER -