TY - JOUR T1 - POLYESTER LİF UZUNLUĞU VE KATKI ORANININ BETONUN MEKANİK VE ISI YALITIM ÖZELLİKLERİNE ETKİSİ TT - THE EFFECT OF POLYESTER FIBER LENGTH AND MIX RATIO ON MECHANICAL AND THERMAL INSULATION PROPERTIES OF CONCRETE AU - Susurluk, Gülşah AU - Sarıkaya, Hakan PY - 2025 DA - March Y2 - 2024 DO - 10.21923/jesd.1566867 JF - Mühendislik Bilimleri ve Tasarım Dergisi JO - MBTD PB - Süleyman Demirel Üniversitesi WT - DergiPark SN - 1308-6693 SP - 107 EP - 119 VL - 13 IS - 1 LA - tr AB - İnşaat mühendisliği yapı malzemelerinde üstün yalıtım ve performans özellikleri sağlamak için, tekstil sektöründe özellikle 2000'li yıllardan itibaren en çok kullanılan ve tüketilen sentetik lif olarak tanımlanan polyester (PES) lifi çok önemli bir hammadde kaynağı olarak öne çıkmaktadır. Bu sebeple, bu çalışma, farklı PES lif uzunlukları (3, 4.5 ve 6 cm) ve farklı lif katkı oranlarında tasarlanan PES lif katkılı betonlarda basınç, eğilme dayanımı ve ısı yalıtımı özellikleri arasındaki ilişkilere odaklanmıştır. Bu amaçla çimento ağırlığınca göre %0, %0,5, %1 ve %1.5 PES lifi içeren rastgele dağıtılmış lif katkılı beton karışımları hazırlanmıştır. Deneysel sonuçlar, PES lif katkısının betonun mekanik özelliklerini artırabileceğini, özellikle eğilme dayanımında olumlu etki sağladığını ortaya koymaktadır. Eğilme kazancına yönelik %1.5 lif katkı oranında %32.4’lük bir kazanç elde edilmiştir. Lif uzunluğunun artması ve karışım oranlarının artması ile yalıtkanlık değerlerinde dikkate değer bir artış görünmektedir. Dolayısıyla lif uzunlukları ve lif içerik oranları ile mekanik ve yalıtım özellikleri arasındaki ilişkilere yönelik R2 0.98 korelasyon katsayısı ile tahmin edilebileceğini ortaya koymaktadır. Bu çalışma, inşaat sektöründe sentetik liflerin içeriğinin beton karışımlarına entegrasyonu etkili bir tasarım yaklaşımı olarak görünmektedir. KW - Polyester Lifi KW - Basınç Dayanımı KW - Eğilme Dayanımı KW - Isı yalıtım N2 - Polyester (PES) fiber, recognized as the most widely used and consumed synthetic fiber in the textile industry, is a significant raw material source that provides superior insulation and performance characteristics in construction materials. Therefore, this study focuses on the relationships among compressive strength, flexural strength, and thermal insulation properties in PES fiber-incorporated concrete designed with different PES fiber lengths (3, 4.5 and 6 cm) and different content ratios. For this purpose, randomly distributed fiber-incorporated concrete mixtures containing 0%, 0.5%, 1% and 1.5% PES fiber by weight of cement were prepared. Experimental results indicate that PES fiber additive can enhance the mechanical properties of concrete, particularly providing a positive effect on flexural strength. A significant enhancement in thermal insulation values is observed with the increase of fiber length and fiber content ratios. Therefore, it is revealed that the relationships between fiber lengths and fiber content ratios and mechanical and insulation properties can be estimated with a correlation coefficient of R2 of 0.98. This study demonstrates that the integration of synthetic fibers into concrete mixtures represents an effective design approach in the construction industry. CR - AbdelAleem, B.H., Hassan, A.A.A., 2019. Influence of Synthetic Fibers’ Type, Length, And Volume on Enhancing The Structural Performance of Rubberized Concrete, Construction and Building Materials, 229, 116861. CR - Al-Ameeri, A., 2013. The Effect of Steel Fiber on Some Mechanical Properties of Self Compacting Concrete, American Journal of Civil Engineering, 1, 102-110. CR - Althoey, F., Ansari, W.S., Sufian, M., Deifalla, A.F., 2023. Advancements in Low-Carbon Concrete As A Construction Material for The Sustainable Built Environment. Developments in the Built Environment, 16, 100284. CR - Anand, S., Khan, M.A., Kumar, A., 2016. Effect of Steel Fiber on Self Compacting Concrete: A Review, International Research Journal of Engineering and Technology, 3, 507-510. CR - ASTM C1113/C1113-09, 2009. Standard Test Method for Thermal Conductivity of Refractories By Hot Wire (Platinum Resistance Thermometer Technique). ASTM International, West Conshohocken, PA. CR - Ba, J., 2023. On The Feasibility of Using Polyester (PE) Waste Particles From Metal Coating Industry As A Secondary Raw Materials in Concrete, Clean. Mater. 9, https://doi.org/10.1016/j.clema.2023.100193. CR - Babafemi, A.J., Boshoff, W.P., 2017. Pull-Out Response of Macro Synthetic Fibre From Concrete Matrix: Effect of Loading Rate and Embedment Length. Construction and Building Materials, 135, 590-599. CR - Eduardo, N.B.P., Joaquım, A.O.B., Camoes, A., 2008. Steel Fiber-Reinforced Self-Compacting Concrete: Experimental Research and Numerical Simulation, Journal of Structural Engineering, ASCE, 134, 1310-1315. CR - El-Dieb, A.S., 2009. Mechanichal, Durability and Microstructural Characteristics of Ultra High Strength Self Compacting Concrete Incorporating Steel Fiber, Materials and Design, 30, 4286-4292. CR - Fode, T.A., Jande, Y.A.C., Kivevele, T., 2024. Physical, Mechanical, And Durability Properties of Concrete Containing Different Waste Synthetic Fibers for Green Environment – A critical review, Heliyon, 10, e32950. CR - Gao, J., Wang. Z., Zhang, T., Zhou, L., 2017. Dispersion of Carbon Fibers in Cement-Based Composites with Different Mixing Methods, Construction and Building Materials 134, 220-227. CR - Khaloo, A., Raisi, E.M., Hosseini, P., Tahsiri, H., 2014. Mechanical Performance of Self Compacting Concrete Reinforced with Steel Fibers, Construction and Building Materials, 51, 179-186. CR - Khan, M., McNally, C., 2023. A Holistic Review on The Contribution of Civil Engineers for Driving Sustainable Concrete Construction in The Built Environment. Developments in the Built Environment, 16, 100273. CR - Kiruthika, C., Prabha, S.L., Neelamegam, M., 2020. Different Aspects of Polyester Polymer Concrete for Sustainable Construction, Materials Today Proceedings, https:// doi.org/10.1016/j.matpr.2020.09.766. CR - Michalik, A., Chylinski, F., Piekarczuk, A., Pichor, W., 2023. Evaluation of Recycled Tyre Steel Fibres Adhesion to Cement matrix, Journal of Building Engineering, 68, 106146. CR - Nanni, A., Bakis, C.E., Boothby, T.E., 1998. Test Methods for FRP-Concrete Systems Subjected to Mechanical Loads: State-Of-The-Art Review, Plast. Compos. 14, 524-558. CR - Nassar, R.U.D., Saeed, D., Sufyan-Ud-Din, M., Nassar, S., 2022. Production of Eco-Friendly Concrete Masonry Units Using Powder Waste Glass, Civil Engineering and Architecture, 10 (2), 415–424 CR - Patti, A., Cicala, G., 2021. Eco-Sustainability of The Textile Production: Waste Recovery and Current Recycling in The Composites World, Polymer, 1-25. CR - Ranade, R., Li, V.C., Heard, W.F., 2015. Tensile Rate Effects in High Strength-High Ductility Concrete, Cement Concrete Research, 68, 94-104. CR - Salhotra, S., Khitoliya, R.K., Kumar, S., 2023. Comparative Study of Uncoated and Coated Waste PET Fiber for Sustainable Concrete, Materials Today Proceedings, 80, 2022–2026, https://doi.org/10.1016/j.matpr.2021.06.060. CR - TS EN 12390-4, 2002. Testing Hardened Concrete - Part 4: Compressive Strength - Specification for Testing Machines, Turkish Standard Institute, Ankara (in Turkish). CR - TS EN 12390-5, 2019. Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens, Turkish Standard Institute, Ankara (in Turkish). CR - TS EN 196-1, 2009. Methods of Testing Cement: Part 1. Determination of Strength, Turkish Standard Institute, Ankara (In Turkish). CR - TS EN 206+A2, 2021. Concrete - Specification, Performance, Production and Conformity. Turkish Standard Institute, Ankara (in Turkish). CR - Wang, Y., Wu, H.C., Li, V.C., 2000. Concrete Reinforcement with Recycled Fibers, J. Mater. Civ. Eng. 12 (4), 314-319. CR - Zheng, L., Huo, X.S., Yuan, Y., 2008. Experimental Investigation on Dynamic Properties of Rubberized Concrete, Construction Building Materials, 22 (5), 939-947. UR - https://doi.org/10.21923/jesd.1566867 L1 - https://dergipark.org.tr/tr/download/article-file/4286576 ER -