TY - JOUR T1 - GRAFEN OKSİT İLE YÜZEY İYİLEŞTİRME YAPILMIŞ JÜT LİFLERİN HARÇ KARIŞIMLARIN MEKANİK ÖZELLİKLERİ VE KURUMA BÜZÜLME DAVRANIŞINA ETKİSİ TT - Effect of Jute Fibers Surface Improved with Graphene Oxide on Mechanical Properties and Drying Shrinkage Behavior of Mortar Mixtures AU - Özen, Süleyman PY - 2024 DA - December Y2 - 2024 DO - 10.17482/uumfd.1571743 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 2148-4155 SP - 843 EP - 862 VL - 29 IS - 3 LA - tr AB - Çimentolu sistemlerin mekanik özelliklerini iyileştirebilmek ve süneklik kazandırmak amacı ile genellikle karışımlara lif ilave edilmektedir. Doğal liflerin üretim maliyetinin daha düşük olması, daha az karbon emisyonu ve fosil yakıt tüketimi, biyolojik olarak parçalanabilirlik, daha düşük yoğunluk ve imalat kolaylığı gibi çevresel etkilerinin daha az olması nedeniyle tercih edilmektedir. Diğer yandan, grafen türevi malzemelerin, lif-matris mekanik ve arayüz özelliklerini iyileştirici bir etki gösterdiği kanıtlanmıştır. Bu çalışma kapsamında, grafen-oksit (GO) ile yüzey iyileştirme işlemine tabi tutulan jüt liflerinin harç karışımlarının işlenebilirliğine, basınç dayanımı, eğilme dayanımı, su emme ve kuruma-büzülme performanslarına etkisi araştırılmıştır. Deneysel çalışma kapsamında lif içermeyen kontrol karışımına ilaveten, 0,5 ve 1 cm uzunluğuna sahip GO kaplamalı ve kaplamasız jüt lifler toplam hacmin %0,1, 0,3 ve 0,5 oranlarında karışıma ilave edilerek farklı lifli harç karışımları hazırlanmıştır. Deney sonuçlarına göre lif içeren karışımlarda su azaltıcı katkı ihtiyacı artmıştır. Karışımlara 0,5 cm ve %0,1 lif ilave edilmesi basınç ve eğilme dayanımlarını artırmıştır. GO kaplama yapılması kaplamasız liflere kıyasla dayanımların bir miktar artmasını sağlamıştır. Su emme oranları basınç dayanımı ile ters orantı göstermiştir. Lif ilave edilmesi kuruma-büzülme miktarlarını düşürmüştür. GO kaplama yapılan lifler bu durumda olumlu yönde daha etkili olmuştur. Ancak GO kaplı lif içeriklerinin %0,1’den fazla olması kuruma-büzülmelerin artmasına neden olmuştur. KW - Jüt lif KW - Harç karışımlar KW - Basınç dayanımı KW - Eğilme dayanımı KW - Kuruma büzülme N2 - Fibers are generally added to mixtures to improve the mechanical properties of cementitious systems and to provide ductility. Natural fibers are preferred due to their lower production cost, lower carbon emission and fossil fuel consumption, biodegradability, lower density and ease of manufacturing, and less environmental impact. On the other hand, graphene-derived materials have been proven to have an improving effect on fiber-matrix mechanical and interface properties. Within the scope of this study, the effects of jute fibers subjected to surface improvement with graphene-oxide (GO) on the workability of mortar mixtures, compressive strength, flexural strength, water absorption and drying-shrinkage performances were investigated. Within the scope of the experimental study, in addition to the control mixture without fibers, GO coated and uncoated jute fibers with lengths of 0.5 and 1 cm were added to the mixture at 0.1, 0.3 and 0.5% of the total volume to prepare different fiber mortar mixtures. According to the experimental results, the need for water-reducing admixture increased in mixtures containing fibers. Adding 0.5 cm and 0.1% fiber to the mixtures increased the compressive and flexural strengths. GO coating provided a slight increase in strength compared to uncoated fibers. Water absorption ratios were inversely proportional to compressive strength. Adding fibers reduced the drying-shrinkage amounts. GO-coated fibers were more effective in this case. However, GO-coated fiber contents greater than 0.1% caused an increase in drying-shrinkage. CR - Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and building materials, 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051 CR - Ali, B., Hawreen, A., Kahla, N. B., Amir, M. T., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. https://doi.org/10.1016/j.conbuildmat.2022.128957 CR - Alomayri, T., & Ali, B. (2023). Investigating the load-deflection behaviour and drying shrinkage resistance of HPC reinforced using different cellulose fibres. Journal of Building Engineering, 73, 106714. https://doi.org/10.1016/j.jobe.2023.106714 CR - Aluko, O. G., Yatim, J. M., Kadir, M. A. A., & Yahya, K. (2020). A review of properties of bio-fibrous concrete exposed to elevated temperatures. Construction and Building Materials, 260, 119671. https://doi.org/10.1016/j.conbuildmat.2020.119671 CR - Asprone, D., Durante, M., Prota, A., & Manfredi, G. (2011). Potential of structural pozzolanic matrix–hemp fiber grid composites. Construction and Building Materials, 25(6), 2867-2874. https://doi.org/10.1016/j.conbuildmat.2010.12.046 CR - Aziz, M. A., Paramasivam, P., & Lee, S. L. (1981). Prospects for natural fibre reinforced concretes in construction. International Journal of Cement Composites and Lightweight Concrete, 3(2), 123-132. https://doi.org/10.1016/0262-5075(81)90006-3 CR - Balaguru, P. N., & Shah, S. P. (1992). Fibre-reinforced cement composites. New York: Macgraw-Hill. CR - Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. https://doi.org/10.1016/j.conbuildmat.2013.12.073 CR - Barr, B., Hoseinian, S. B., & Beygi, M. A. (2003). Shrinkage of concrete stored in natural environments. Cement and Concrete Composites, 25(1), 19-29. https://doi.org/10.1016/s0958-9465(01)00044-0 CR - Bazant, Z. P., & Planas, J. (2019). Fracture and size effect in concrete and other quasibrittle materials. 1st Edition. CRC Press. CR - Bheel, N., Tafsirojjaman, T., Liu, Y., Awoyera, P., Kumar, A., & Keerio, M. A. (2021). Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings, 11(10), 454. https://doi.org/10.3390/buildings11100454 CR - Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2016). Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262. https://doi.org/10.1016/j.conbuildmat.2016.09.035 CR - Chakma, M. A., & Amin, R. (2016). Strength and Durability Properties of Concrete by using Jute and Polypropylene Fibers. BUET-ANWAR ISPAT 1st Bangladesh Civ. Eng. SUMMIT, Dhaka. CR - Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252-1260. https://doi.org/10.1021/ie300607r CR - Chandar, S. P., & Balaji, C. J. (2015). Experimental study on the mechanical properties of concrete mixed with jute fiber and steel fiber. Int Res J Eng Technol, 1, 77-82. CR - Chen, J., Yao, B. W., Li, C., & Shi, G. Q. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229. https://doi.org/10.1016/j.carbon.2013.07.055 CR - Choi, S., Panov, V., Han, S., & Yun, K. K. (2023). Natural fiber-reinforced shotcrete mixture: Quantitative assessment of the impact of fiber on fresh and plastic shrinkage cracking properties. Construction and Building Materials, 366, 130032. https://doi.org/10.1016/j.conbuildmat.2022.130032 CR - Dávila-Pompermayer, R., Lopez-Yepez, L. G., Valdez-Tamez, P., Juárez, C. A., & Durán-Herrera, A. (2020). Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cement and Concrete Composites, 112, 103686. https://doi.org/10.1016/j.cemconcomp.2020.103686 CR - Faiq, L. S. (2018). Study of the mechanical properties of jute fiber reinforced cement composites. Engineering and Technology Journal, 36(12A), 1244-1248. https://doi.org/10.30684/etj.36.12a.5 CR - Hasan, R., Sobuz, M. H. R., Akid, A. S. M., Awall, M. R., Houda, M., Saha, A., Meraz, M. M., Islam, M.S. & Sutan, N. M. (2023). Eco-friendly self-consolidating concrete production with reinforcing jute fiber. Journal of Building Engineering, 63, 105519. https://doi.org/10.1016/j.jobe.2022.105519 CR - Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7, 303-317. https://doi.org/10.1007/s40069-013-0059-7 CR - Islam, M. S., & Ahmed, S. J. (2018). Influence of jute fiber on concrete properties. Construction and Building Materials, 189, 768-776. https://doi.org/10.1016/j.conbuildmat.2018.09.048 CR - Islam, M. S. (2021). Simplified shear-strength prediction models for steel-fibre-reinforced concrete beams. Proceedings of the institution of civil engineers-construction materials, 174(2), 88-100. https://doi.org/10.1680/jcoma.16.00073 CR - Khan, M. B., Shafiq, N., Waqar, A., Radu, D., Cismaș, C., Imran, M., Almujibah, H., & Benjeddou, O. (2023). Effects of jute fiber on fresh and hardened characteristics of concrete with environmental assessment. Buildings, 13(7), 1691. https://doi.org/10.3390/buildings13071691 CR - Juarez, C. A., Fajardo, G., Monroy, S., Duran-Herrera, A., Valdez, P., & Magniont, C. (2015). Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Construction and Building Materials, 91, 164-170. https://doi.org/10.1016/j.conbuildmat.2015.05.028 CR - Kundu, S. P., Chakraborty, S., Roy, A., Adhikari, B., & Majumder, S. B. (2012). Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials, 37, 841-850. https://doi.org/10.1016/j.conbuildmat.2012.07.082 CR - Li, Z., Lara, M. A. P., & Bolander, J. E. (2006). Restraining effects of fibers during non-uniform drying of cement composites. Cement and Concrete Research, 36(9), 1643-1652. https://doi.org/10.1016/j.cemconres.2006.04.001 CR - Mansur, M. A., & Aziz, M. A. (1982). A study of jute fibre reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, 4(2), 75-82. https://doi.org/10.1016/0262-5075(82)90011-2 CR - Mazaheripour, H., Barros, J. A., & Sena-Cruz, J. (2016). Tension-stiffening model for FRC reinforced by hybrid FRP and steel bars. Composites Part B: Engineering, 88, 162-181. https://doi.org/10.1016/j.compositesb.2015.10.042 CR - Mehta P.K., Monteiro P.J.M. (2014). Concrete: microstructure, properties, and materials. 4th ed. Englewood Cliffs (NJ): McGraw- Hill. CR - Mello, E., Ribellato, C., & Mohamedelhassan, E. (2014). Improving concrete properties with fibers addition. International Journal of Civil and Environmental Engineering, 8(3), 249-254. CR - Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014 CR - Özen, S., Benlioğlu, A., Mardani, A., Altın, Y., & Bedeloğlu, A. (2024). Effect of graphene oxide-coated jute fiber on mechanical and durability properties of concrete mixtures. Construction and Building Materials, 448, 138225. https://doi.org/10.1016/j.conbuildmat.2024.138225 CR - Rahman, S., & Azad, M. A. K. (2018). Investigation on mechanical strength of jute fiber reinforced concrete JFRC compared to plain concrete. Int. J. Sci. Eng. Res, 9, 560-564. CR - Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites, 27(5), 575-582. https://doi.org/10.1016/j.cemconcomp.2004.09.008 CR - Raval, G., & Kansagra, M. (2017). Effects of Jute Fibers on Fiber-Reinforced concrete. International Journal of Innovative and Emerging Research in Engineering, 4(8), 7-12. CR - Sarker, F., Karim, N., Afroj, S., Koncherry, V., Novoselov, K. S., & Potluri, P. (2018). High-performance graphene-based natural fiber composites. ACS applied materials & interfaces, 10(40), 34502-34512. https://doi.org/10.1021/acsami.8b13018.s001 CR - Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/10.1016/j.cscm.2021.e00724 CR - Stancato, A. C., Burke, A. K., & Beraldo, A. L. (2005). Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cement and Concrete Composites, 27(5), 599-603. https://doi.org/10.1016/j.cemconcomp.2004.09.011 CR - Sultana, N., Hossain, S. Z., Alam, M. S., Hashish, M. M. A., & Islam, M. S. (2020). An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Construction and Building Materials, 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216 CR - Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158 CR - Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A., & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and concrete composites, 27(5), 537-546. https://doi.org/10.1016/j.cemconcomp.2004.09.005 CR - Wang, W., Liu, J., Agostini, F., Davy, C. A., Skoczylas, F., & Corvez, D. (2014). Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cement and Concrete Research, 55, 1-13. https://doi.org/10.1016/j.cemconres.2013.09.008 CR - Zakaria, M., Ahmed, M., Hoque, M. M., & Hannan, A. (2015). Effect of jute yarn on the mechanical behavior of concrete composites. SpringerPlus, 4, 1-8. https://doi.org/10.1186/s40064-015-1504-7 CR - Zakaria, M., Ahmed, M., Hoque, M. M., & Islam, S. (2017). Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability, 2(1), 1-10. https://doi.org/10.1186/s40689-016-0022-5 CR - Zhang, J., & Li, V. C. (2001). Influences of fibers on drying shrinkage of fiber-reinforced cementitious composite. Journal of engineering mechanics, 127(1), 37-44. https://doi.org/10.1061/(asce)0733-9399(2001)127:1(37) CR - Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020a). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, 103512. https://doi.org/10.1016/j.cemconcomp.2020.103512 CR - Zhang, T., Yin, Y., Gong, Y., & Wang, L. (2020b). Mechanical properties of jute fiber‐reinforced high‐strength concrete. Structural Concrete, 21(2), 703-712. https://doi.org/10.1002/suco.201900012 CR - Zhou, X., Ghaffar, S. H., Dong, W., Oladiran, O., & Fan, M. (2013). Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Materials & Design, 49, 35-47. https://doi.org/10.1016/j.matdes.2013.01.029 CR - Zia, A., & Ali, M. (2017). Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Construction and Building Materials, 155, 726-739. https://doi.org/10.1016/j.conbuildmat.2017.08.078 UR - https://doi.org/10.17482/uumfd.1571743 L1 - https://dergipark.org.tr/tr/download/article-file/4307178 ER -