TY - JOUR T1 - Adaptation of a comprehensive simplification method to the Adaptive Exponential Integrate and Fire Neuron and Its FPGA-based verification TT - Kapsamlı bir basitleştirme yönteminin Uyarlanabilir Üstel Entegre ve Ateşlemeli Nöronuna uyarlanması ve FPGA tabanlı doğrulaması AU - Korkmaz, Nimet AU - Şıvga, Bekir PY - 2025 DA - July Y2 - 2025 DO - 10.28948/ngumuh.1573633 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 990 EP - 1000 VL - 14 IS - 3 LA - en AB - The preference of a comprehensive method usage is as important as less hardware usage on digital device-based implementations. The mathematical series expansions have a widespread usage in the transformation of expressions into simpler forms. The exponential, trigonometric, logarithmic, etc. functions are usually converted to simpler expressions for digital implementation easiness. In these implementations, it is an expected output that as the operands of the series increases, the revised model converges to the original one. However, the most appropriate number determination of these operands is important for hardware efficiency. In here, the exponential expression of the Adaptive Exponential Integrate and Fire (ADEX) neuron model is expanded up to the tenth operand of the Taylor series. Then, an optimum operand number is identified for getting both hardware utilization efficiency and neuronal meaningfulness. The differences between the original and revised models are compared with the error calculations and the neuronal observations. Lastly, the revised ADEX neuron model is realized by FPGA device to prove the efficiency of the proposed adaptation. KW - Adaptive exponential integrate and fire (ADEX) neuron model KW - Field Programmable Gate Array (FPGA) KW - digital implementation KW - neuromorphic engineering. N2 - Dijital cihaz tabanlı gerçekleştirimlerde kapsamlı bir yöntemin kullanılmasının tercihi, az donanım kullanımı kadar önemlidir. Matematiksel seri açılımları, ifadelerin daha basit biçimlere dönüştürülmesinde yaygın bir kullanıma sahiptir. Üstel, trigonometrik, logaritmik vb. işlevler genellikle dijital uygulama kolaylığı için daha basit ifadelere dönüştürülür. Bu uygulamalarda, serinin işlenenleri arttıkça, revize edilmiş modelin orijinal modele yakınsaması beklenen bir çıktıdır. Bununla birlikte, bu işlenenlerin en uygun sayısını belirlenmesi donanım verimliliği için önemlidir. Burada, Uyarlanabilir Üstel Entegre ve Ateşlemeli (ADEX) nöron modelinin üstel ifadesi, Taylor serisinin onuncu işlenenine kadar genişletilmiştir. Daha sonra, hem donanım kullanım verimliliği hem de nöronal anlamlılığı elde etmek için optimum bir işlenen sayısı belirlenmiştir. Orijinal ve revize edilmiş modeller arasındaki farklar, hata hesaplamaları ve nöronal gözlemlerle karşılaştırılmıştır. Son olarak, revize edilmiş ADEX nöron modeli, önerilen adaptasyonun verimliliğini kanıtlamak için FPGA cihazı tarafından gerçekleştirilmiştir. CR - E. M. Izhikevich, Simple model of spiking neurons, in IEEE Transactions on Neural Networks, 14, 6, 1569-1572, 2003, doi: 10.1109/TNN.2003.820440. CR - Gerstner, Wulfram, and Werner M. Kistler. Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press, 2002. doi.org/10.1017/CBO9780511815706 CR - Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117,4, 500, 1952. doi: 10.1113/jphysiol CR - C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213, 1981. doi.org/10.1016/S0006-3495(81)84782-0 CR - A. J. Isjpeert, Central Pattern Generators for locomotion control in animals and robots: A review. Neural Networks, 21, 642-653, 2008. doi.org/10.1016/j.neunet.2008.03.014 CR - R. FitzHugh, Mathematical models for excitation and propagation in nerve, Biological Engineering, H.P. Schawn (Ed.), New York: McGraw-Hill, 1- 85, 1969. CR - J. L. Hindmarsh, R. M. Rose, A model of neuronal bursting using three couple first order differential equations, Proc. R. Soc. Lond. Biol. Sci., 22,1222, 87-102, 1984. doi.org/10.1098/rspb.1984.0024 CR - H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical Journal, 12,1, 1-24,1972. doi.org/10.1016/S0006-3495(72)86068-5 CR - R. Jolivet, A. Rauch, H. R. L. Lüscher, Gerstner, W. Integrate and-Fire models with adaptation are good enough: Predicting spike times under random current injection, Adv. Neural Inf. Proces. Syst., 18, 595–602, 2005. doi.org/10.1101/2024.09.03.610998 CR - M. G. F. Fuortes, F. Mantegazzini, Interpretation of the repetitive firing of nerve cells, J. Gen. Physiol., 45,6, 1163–1179, 1962. doi.org/10.1085/jgp.45.6.1163 CR - A. Treves, Mean-field analysis of neuronal spike dynamics, Network: Comput. Neural Syst., 4,3, 259–284, 1993. doi.org/10.1088/0954-898X/4/3/002 CR - P. E. Latham, B. J. Richmond, P. G. Nelson, S. Nirenberg, Intrinsic dynamics in neuronal networks, J. Neurophysiol, 83,2, 808–827, 2000. doi.org/10.1152/ jn.2000.83.2.808 CR - M. J. Richardson, N. Brunel, V. Hakim, From subthreshold to firing-rate resonance, J. Neurophysiol., 89,5, 2538–2554, 2003. doi.org/10.1152/jn.00955. 2002 CR - R. Naud, N. Marcille, C. Clopath, W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybern., 99, 4–5, 335–347, 2008. doi.org/10.1007/s00422-008-0264-7 CR - H. Soleimani, A. Ahmadi, M. Bavandpour, Biologically inspired spiking neurons: Piecewise linear models and digital implementation, IEEE Trans. Circuits Syst. I: Regular Papers, 59,12, 2994–3001, 2012. doi: 10.1109/TCSI.2012.2206463 CR - Z. Jie, Y. Baoquan, Mixed signal integrated circuit design for integrate-and-fire spiking neurons, Circuits Syst. Signal Process., 42, 27–46, 2023. doi.org/10.1007/s00034-022-02131-2 CR - N.A. Kant, M. R. Dar, F. A. Khanday, et al. Ultra-low-voltage integrable electronic realization of integer- and fractional-order liao’s chaotic delayed neuron model, Circuits Syst. Signal Process., 36, 4844–4868, 2017. doi.org/10.1007/s00034-017-0615-5 CR - Y. Heo, H. Song, Circuit modeling and implementation of a biological neuron using a negative resistor for neuron chip, BioChip J., 6, 17–24, 2012. doi.org/10.1007/s13206-012-6103-x CR - S. B. Furber, S. Temple, A. D. Brown, High- performance computing for systems of spiking neurons, In AISB’06 Workshop on GC5: Architecture of Brain and Mind, 2, 29–36, 2006. CR - K. Yamazaki, V. K. Vo-Ho, D. Bulsara, N. Le, Spiking neural networks and their applications: A Review, Brain Sciences, 12,7, 863, 2022. doi.org/10.3390/ brainsci12070863 CR - Ö. Erdener, S. Ozoguz, A new neuron and synapse model suitable for low power VLSI implementation, Analog Integr. Circ. Sig. Process., 89, 749–770, 2016. doi.org/10.1007/s10470-016-0773-6 CR - M. Glover, A. Hamilton, L. S. Smith, Analogue VLSI leaky integrate-and-fire neurons and their use in a sound analysis system, Analog Integr. Circ. Sig. Process, 30, 91–100, 2002. doi.org/10.1023/A: 1013747426448 CR - E. P. Frady, S. Sanborn, S. B. Shrestha, et al., Efficient neuromorphic signal processing with resonator neurons, J. Sign. Process. Syst., 94, 917–927, 2022. doi.org/10.1007/s11265-022-01772-5 CR - Y. Khakipoor, H. B. Bahar, G. Karimian, An efficient analysis of FitzHugh-Nagumo circuit model, Analog Integr. Circ. Sig. Process., 110, 385–393, 2022. doi.org/10.1007/s10470-021-01947-3 CR - S. Millner, A. Grübl, K. Meier, J. Schemmel, M. O. Schwartz, A VLSI implementation of the adaptive exponential integrate-and-fire neuron model, Adv. Neural Inf. Process. Syst., 1642–1650, 2010. doi.org/10.4249/scholarpedia.8427 CR - O. Sharifipoorand, A. Ahmadi, An analog implementation of biologically plausible neurons using CCII building blocks, Neural Network, 36, 129-135, 2012. doi.org/10.1016/j.neunet.2012.08.017 CR - Z. T. Njitacke, T. F. Fozin, S. S. Muni, J. Awrejcewicz, J. Kengne, Energy computation, infinitely coexisting patterns and their control from a Hindmarsh–Rose neuron with memristive autapse, Circuit implementation, AEU- Int. J. Electron. Commun., 155, 154361, 2022. doi.org/10.1016/j.aeue.2022.154361 CR - T. Matsubara, H. Torikai, T. Hishiki, A generalized rotate-and-fire digital spiking neuron model and its on-FPGA learning, IEEE Trans. Circuits Syst. II: Express Briefs, 58,10, 677–681, 2011. doi.org/10.1109/ TCSII.2011.2161705 CR - A. Grübl, S. Billaudelle, B. Cramer, et al., Verification and design methods for the brainscales neuromorphic hardware system, J. Sign. Process. Syst., 92, 1277–1292, 2020. doi.org/10.1007/s11265-020-01558-7 CR - S. Majidifar, M. Hayati, M. R. Malekshahi, D. Abbott, FPGA implementation of memristive Hindmarsh–Rose neuron model: Low cost and high-performing through hybrid approximation, AEU- Int. J. Electron. Commun., 154968, 2023. doi.org/10.1016/j.aeue. 2023.154968 CR - J. Toubouland, R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biol. Cybern., 99,4–5, 319–334, 2008. doi.org/10.1007/ s00422-008-0267-4 CR - H. Soleimani, A. Ahmadi, M. Bavandpour, Biologically inspired spiking neurons: piecewise linear models and digital implementation, IEEE Trans. Circuits. Syst. I Regul. Pap., 59,12, 2991-3004, 2012. doi.org/10.1109/TCSI.2012.2206463 CR - N. Korkmaz, İ. Öztürk, A. Kalınlı, R. Kılıç, A Comparative study on determining nonlinear function parameters of the Izhikevich neuron model, J. Circuits, Syst. Comput., 27,10, 2018. doi.org/10.1109/TCSI. 2012.2206463 CR - M. Hayati, M. Nouri, D. Abbott, S. Haghiri, Digital multiplierless realization of two-coupled biological hindmarsh–rose neuron model, IEEE Trans. Circuits Syst. II Express Briefs, 63,5, 463-467, 2016. doi.org/10.1109/TCSII.2015.2505258 CR - N. Korkmaz, İ. Öztürk, R. Kılıç, The investigation of chemical coupling in a HR neuron model with reconfigurable implementations, Nonlinear Dyn., 86,3, 1841-1854, 2016. doi.org/10.1007/s11071-016-2996-6 CR - S. Gomar, A. Ahmadi, Digital multiplierless implementation of biological Adaptive-Exponential neuron model, IEEE Trans. Circuits. Syst. I Regul. Pap., 61,4, 1206-1219, 2014. doi.org/10.1109/TCSI. 2013.2286030 CR - S. Haghiri, A. Ahmadi, A novel digital realization of ADEX neuron model. IEEE Trans. Circuits Syst. II Express Briefs, 67,8, 1444-1448, 2020. doi.org/10.1109/TCSII.2019.2938180 CR - E. Jokar, H. Abolfathi, A. Ahmadi, M. Ahmadi, An efficient uniform-segmented neuron model for large-scale neuromorphic circuit design: simulation and FPGA synthesis results, IEEE Trans, Circuits Syst. I Regul. Pap., 66,6, 2336-2349, 2019. doi.org/10.1109/ TCSI.2018.2889974 CR - J. Touboul, R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biol. Cybern., 99,4, 319-334, 2008. doi.org/10.1007/s00422-008-0267-4 CR - A. Başargan, A synaptic coupling for the adaptive exponential integrate and fire (ADEXI&F) neuron model with circuit simulations, M. Sc. Thesis, Istanbul Technical University, 65, 2013. CR - J. J. Duistermaat, J. A. C. Kolk, Taylor expansion in several variables. in: distributions, Cornerstones, Birkhäuser Boston, 2010. doi.org/10.1007/978-0-8176-4675-2_6 CR - M. Tuna, A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: design and its FPGA implementation, Analog Integr. Circ. Sig. Process., 105,167–181, 2020. doi.org/10.1007/s10470-020-01703-z CR - M. Greenberg, Advanced engineering mathematics. 2nd ed., Prentice Hall, ISBN 0-13-321431-1, 1998. CR - C. Willmott, K. Matsuura, On the use of dimensioned measures of error to evaluate the performance of spatial interpolators, Int. J. Geogr. Inf. Sci., 20, 89–102, 2006. doi.org/10.1080/13658810500286976 CR - Z. Li, Exponential stability of synchronization in asymmetrically coupled dynamical networks, Chaos Interdiscip. J. Nonlinear. Sci., 18,2, 023124, 2008. doi.org/10.1063/1.2931332 CR - J. W. Shuai, D. M. Durand, Phase synchronization in two coupled chaotic neurons, Phys. Lett. A, 264,4, 289–297, 1999. doi.org/10.1016/S0375-9601(99) 00816-6 CR - N. J. Gogtay, U. M. Thatte, Principles of correlation analysis, Journal of the Association of Physicians of India, 65,3, 78-81, 2017. CR - www.xilinx.com , Accessed 24.10.2024 UR - https://doi.org/10.28948/ngumuh.1573633 L1 - https://dergipark.org.tr/tr/download/article-file/4315330 ER -