TY - JOUR T1 - Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri TT - The effect of fluid viscous dampers on performance of a residential building AU - Özer, Esra PY - 2024 DA - October JF - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi PB - Pamukkale Üniversitesi WT - DergiPark SN - 2147-5881 SP - 650 EP - 659 VL - 30 IS - 5 LA - tr AB - Bu çalışmada, burulma düzensizliğine sahip orta yüksekliktekigeleneksel betonarme bir binada, doğrusal ve doğrusal olmayanakışkan viskoz sönümleyiciler (FVD) kullanılarak sismik performansındeğişimi incelenmiştir. Analizlerde kullanılan betonarme binamodelleri üç boyutlu(3B) ve beş katlı olarak tasarlanmıştır. Modellerinyapısal elemanlarında doğrusal elastik olmayan davranış dikkatealınmıştır. Spektrum uyumlu 11 adet gerçek ivme kayıt takımıkullanılarak toplam 66 adet çift yönlü doğrusal olmayan zaman tanımalanında dinamik analiz yapılmıştır. Akışkan viskoz sönümleyicilerindoğrusal ve doğrusal olmayan sismik davranışları, ankastre mesnetlimodel ile karşılaştırılmıştır. Bu karşılaştırmalar, tepe yer değiştirmeoranları, katlar arası göreli öteleme oranları, burulma düzensizlikkatsayısı ve mutlak ivme parametreleri kullanılarakgerçekleştirilmiştir. Bina yüksekliği boyunca çapraz olarak uygulananFVD sönümleyiciler, ankastre mesnetli modele göre sismik taleplericiddi oranda azaltmıştır. Ayrıca, yapısal eksantrisiteden kaynaklananburulma düzensizliği FVD kullanımı ile ihmal edilebilecek düzeyeindirgenmiştir. En iyi sismik performans doğrusal elastik olmayanakışkan viskoz sönümleyicinin (NFVD) kullanıldığı modelde eldeedilmiştir. KW - Akışkan viskoz sönümleyici-FVD KW - Burulma düzensizliği KW - Zaman tanım alanında analiz N2 - In this study, the change of seismic performance was investigated byusing linear and nonlinear fluid viscous dampers (FVD) in a mid-riseconventional reinforced concrete (RC) building with torsionalirregularity. Analysis models were designed as three-dimensional (3D)and 5-story. In the structural elements of the models, nonlinear behaviorwas taken into account. A total of 66 bi-directional nonlinear timehistory dynamic analyzes were performed using 11 spectrumcompatible real earthquake record sets. Linear and nonlinear seismicbehavior of fluid viscous dampers were compared with the fixed-basemodel. These comparisons were made using roof drift ratios, interstorydrift ratio, torsion irregularity coefficient and absolute accelerationparameters. The FVD dampers applied diagonally through the height ofthe building significantly reduced seismic demands compared to thefixed-base model. In addition, the torsional irregularity caused bystructural eccentricity was reduced to negligible level by using FVE DİĞ.The best seismic performance was obtained using nonlinear fluidviscous damper (NFVD). CR - [1] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018. CR - [2] Deringöl AH, Güneyisi EM. “Effect of lead rubber bearing on seismic response of regular and irregular frames in elevation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1076-1085, 2020. CR - [3] Çerçevik AE, Avşar Ö. “Doğrusal sismik izolasyon parametrelerinin karga arama algoritması ile optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 440-447, 2020. CR - [4] Özçelik R. “Burkulması engellenmiş çelik çaprazlar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 160-170, 2016. CR - [5] Özer E, İnel M. “Sismik izolatörlerin betonarme konut binasının performansı üzerindeki etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 303-311, 2021. CR - [6] Özer E. Geleneksel ve Taban İzolatörlü Betonarme Binaların Sismik Davranışlarının Karşılaştırılması. Doktora Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2022. CR - [7] Castaldo P. Integrated Seismic Design of Structure and Control Systems. New York, USA, Springer International Publishing, 2014. CR - [8] Constantinou MC, Symans MD. Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers. 2nd ed. New York, USA, Wiley, 1993. CR - [9] Ras A, Boumechra N. “Seismic energy dissipation study of linear fluid viscous dampers in steel structure design.” Alexandria Engineering Journal, 55(3), 2821-2832, 2016. CR - [10] Kandemir EC, Mazda T, Nurui H, Miyamoto H. “Seismic retrofit of an existing steel arch bridge using viscous damper”. Procedia Engineering, 14, 2301-2306, 2011. CR - [11] Martinez-Rodrigo M, Romero ML. “An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications”. Engineering Structures, 25(7), 913-925, 2003. CR - [12] Guo T, Xu J, Xu W, Di Z. “Seismic upgrade of existing buildings with fluid viscous dampers: Design methodologies and case study”. Journal of Performance of Constructed Facilities, 29(6), 1-11, 2015. CR - [13] Hicyilmaz M, Doğan M, Gönen H. “Investigation of optimum viscous damper distribution in steel frames with set-back irregularities”. Pamukkale University Journal of Engineering Sciences, 24(6), 1024-1029, 2018. CR - [14] Karimi MRB, Genes MC. “Effectiveness of FVD-BIS for protecting a base-isolated high-rise building against resonance”. Earthquakes and Structures, 21(4), 351-370, 2021. CR - [15] Deringöl AH, Güneyisi EM, Hansu O. “Combined Effect of Bearing Stiffness of the Base Isolator and Damping Characteristics of the Viscous Damper on the Nonlinear Response of Buildings”. International Journal of Steel Structures, 22(5), 1497-1517, 2022. CR - [16] Deringöl AH, Güneyisi EM. “Single and combined use of friction-damped and base-isolated systems in ordinary buildings”. Journal of Constructional Steel Research, 174, 1-18, 2020. CR - [17] Deringöl AH, Güneyisi EM. “Influence of nonlinear fluid viscous dampers in controlling the seismic response of the base-isolated buildings”. In Structures, 34, 1923-1941, 2021. CR - [18] Mokhtari M, Naderpour H. “Seismic Vulnerability Assessment of Reinforced Concrete Buildings Having Nonlinear Fluid Viscous Dampers.” Bulletin of Earthquake Engineering, 20(13), 7675-7704, 2022. CR - [19] Gidaris I, Taflanidis AA. “Performance Assessment and Optimization of Fluid Viscous Dampers Through LifeCycle Cost Criteria and Comparison to Alternative Design Approaches.”.Bulletin of Earthquake Engineering, 13, 1003-1028, 2015. CR - [20] SAP2000 V-20 CSI. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. Berkeley, USA, 62708, 2020. CR - [21] PEER. “PEER Ground Motion Database”. http://peer.berkeley.edu (09.09.2019). CR - [22] Fardis MN, Biskinis DE. Deformation of RC Members, as Controlled by Flexure or Shear. Editor: Shiohara H. Performance-based Engineering for Earthquake Resistant Reinforced Concrete Structures: a Volume Honoring Shunsuke Otani, University of Tokyo, 515-530, Otani, Tokyo, 2003 CR - [23] SEMAp. “Sargı etkisi Modelleme Analiz Programı”. Ankara, Türkiye, Tubitak Proje No: 105M024, 2008. CR - [24] Federal Emergency Management Agency. “2015 NEHRP Recommended Seismic Provisions (P1051): Design Examples”. Washington DC, USA, 2016. CR - [25] International Code Council. “International building code (UBC)”. California, USA, 1997. CR - [26] Taylor Devices Inc. Fluid Viscous Dampers General Guidelines for Engineers Including a Brief History. 1st ed. New York, USA, Taylor, 2020. CR - [27] Nagarajaiah S, Reinhorn AM, Constantinou MC. “Torsion in base-isolated structures with elastomeric isolation systems”. Journal of Structural Engineering, 119(10), 2932–2951, 1993. CR - [28] Tena-Colunga A, Zambrana-Rojas C. “Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system” Engineering Structures, 28(1), 72–83, 2006. CR - [29] Belgium European Committee for Standardization. “Eurocode 8: design of structures for earthquake resistance-Part 2: bridges”. Brussels, Belgium, EN 1998-2, 2005. CR - [30] Seguín CE, de la Llera JC, Almaz ́an JL. “Base-structure interaction of linearly isolated structures with lateraltorsional coupling”. Engineering Structures, 30(1), 110–125, 2008. CR - [31] Lee D, Taylor P. Viscous Damper Development and Future Trends. 1st ed. North Tonawanda, USA, Wiley, 2001. CR - [32] Akcelyan S, Lignos DG, Hikino T. “Adaptive numerical method algorithms for nonlinear viscous and bilinear oil damper models subjected to dynamic loading”. Soil Dynamics and Earthquake Engineering, 113, 488-502, 2018. CR - [33] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31(2011), 941-953, 2011. CR - [34] Ozmen HB, Yilmaz H, Yildiz H. “An acceleration record set for different frequency content, amplitude and site classes”. Research on Engineering Structures & Materials, 5(3), 321-333, 2019. CR - [35] Karakutuk O. Effects of Ground Motion Selection on Seismic Response of Buildings. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2015. CR - [36] NEHRP Consultants Joint Venture for the National Institute of Standards and Technology. “Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses”. Maryland, USA, NISTGCR1191715, 2011. CR - [37] American Society of Civil Engineers (ASCE). “Nehrp Recommended Provisions for Seismic Regulations for New Buildings and Other Structures”. In, Washington DC, USA, FEMA-P-450, 2003. CR - [38] Yang D, Pan J, Li G. “Interstory Drift Ratio of Building Structures Subjected to Near-Fault Ground Motions Based on Generalized Drift Spectral Analysis.” Soil Dynamics and Earthquake Engineering, 30(11), 1182-1197, 2010. CR - [39] Ras A, Boumechra N. “Study of nonlinear fluid viscous dampers behaviour in seismic steel structures design”. Arabian Journal for Science and Engineering, 39, 8635-8648, 2014. UR - https://dergipark.org.tr/tr/pub/pajes/issue//1575531 L1 - https://dergipark.org.tr/tr/download/article-file/4323391 ER -