TY - JOUR T1 - Türkiye’nin Kimyasal Madde İthalatının Gelecek Tahmini: Makine Öğrenmesi ve Topluluk Öğrenme Yöntemleri Performans Analizi TT - Future Forecasting of Turkey’s Chemical Imports: Performance Analysis of Machine Learning and Ensemble Learning Methods AU - Eşidir, Kamil Abdullah PY - 2025 DA - January Y2 - 2024 DO - 10.18069/firatsbed.1580620 JF - Firat University Journal of Social Sciences PB - Fırat Üniversitesi WT - DergiPark SN - 1300-9702 SP - 261 EP - 278 VL - 35 IS - 1 LA - tr AB - Bu çalışma, Türkiye'nin kimyasal madde ithalatının gelecekteki değerlerini tahmin etmek amacıyla makine öğrenmesi ve topluluk öğrenme yöntemlerinin performansını değerlendirmektedir. Doğrusal Regresyon, Rastgele Orman, Rasyonel Kuadratik Regresyon, Destek Vektör Makinesi ve XGBoost modelleri kullanılmıştır. Veriler, TÜİK ve TCMB gibi güvenilir kaynaklardan elde edilmiştir. Makroekonomik değişkenler arasında Türkiye İthalatı, Kimyasallar ve Kimyasal Ürünler Üretim Endeksi, Aylık Ortalama Dolar Kuru, İmalat Sanayi Üretim Endeksi, Petrol Varil Fiyatları ve Kimyasal Madde İhracatı yer almaktadır. Analiz sonuçlarına göre, XGBoost modeli en yüksek doğruluk ve genelleme yeteneğine sahiptir. Model, eğitim, test ve çapraz doğrulama setlerinde en düşük hata oranları ve en yüksek R² değerleri ile başarılı performans göstermiştir. SHAP analizi, Türkiye İthalatı ve Kimyasallar Üretim Endeksi değişkenlerinin en yüksek etkiye sahip olduğunu ortaya koymuştur. XGBoost modeli ile yapılan projeksiyonlar, Türkiye'nin kimyasal madde ithalatının gelecekteki seyrine dair önemli bilgiler sunmakta, ekonomik planlama ve ticari stratejiler için kritik öneme sahiptir. Modelin yeteneği, politika yapıcılar ve iş dünyası için stratejik kararları kolaylaştırmaktadır. KW - Kimyasal Madde İthalatı KW - Makine Öğrenmesi KW - Topluluk Öğrenme KW - Ekonomik Tahmin KW - XGBoost N2 - This study evaluates the performance of machine learning and ensemble learning methods to predict the future values of Turkey's chemical imports. Linear Regression, Random Forest, Rational Quadratic Regression, Support Vector Machine and XGBoost models are used. Data are obtained from reliable sources such as TurkStat and CBRT. Macroeconomic variables include Turkey's Imports, Chemicals and Chemical Products Production Index, Monthly Average Dollar Exchange Rate, Manufacturing Industry Production Index, Oil Barrel Prices and Chemicals Exports. According to the analysis results, the XGBoost model has the highest accuracy and generalization ability. The model performed well in the training, test and cross-validation sets with the lowest error rates and the highest R² values. SHAP analysis reveals that Turkey Imports and Chemicals Production Index variables have the highest impact. The projections made with the XGBoost model provide important insights into the future course of Turkey's chemical imports and are critical for economic planning and trade strategies. The model's capability facilitates strategic decisions for policymakers and the business community. CR - Al Marzooqi, F. I. and Redouane, A. (2024). Predicting real estate prices using machine learning in abu dhabi. Iraqi Journal of Science, 1689-1706. https://doi.org/10.24996/ijs.2024.65.3.40 CR - Bayrak, T. (2020). A machine-learning-based model for forecasting medical device foreign trade. Eskişehir Technical University Journal of Science and Technology a - Applied Sciences and Engineering, 21(4), 477-485. https://doi.org/10.18038/estubtda.803546 CR - Bhagwat, A., Baets, B. D., Steen, A., Vlaeminck, B., & Fievez, V. (2012). Prediction of ruminal volatile fatty acid proportions of lactating dairy cows based on milk odd- and branched-chain fatty acid profiles: new models, better predictions. Journal of Dairy Science, 95(7), 3926-3937. https://doi.org/10.3168/jds.2011-4850 CR - Biau, G. and Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7 CR - Bilgili, M., Keiyinci, S., & Ekinci, F. (2022). One-day ahead forecasting of energy production from run-of-river hydroelectric power plants with a deep learning approach. Scientia Iranica, 0(0), 0-0. https://doi.org/10.24200/sci.2022.58636.5825 CR - Brabenec, T. and Šuleř, P. (2020). Machine learning forecasting of cr and prc balance of trade. SHS Web of Conferences, 73, 01004. https://doi.org/10.1051/shsconf/20207301004 CR - Broeck, G. V. d., Lykov, A., Schleich, M., & Suciu, D. (2022). On the tractability of shap explanations. Journal of Artificial Intelligence Research, 74, 851-886. https://doi.org/10.1613/jair.1.13283 CR - Broeren, M. L. M., Saygin, D., & Patel, M. K. (2014). Forecasting global developments in the basic chemical industry for environmental policy analysis. Energy Policy, 64, 273-287. https://doi.org/10.1016/j.enpol.2013.09.025 CR - Cao, S. and Hu, Y. (2024). Interpretable machine learning framework to predict gout associated with dietary fiber and triglyceride-glucose index. Nutrition &Amp; Metabolism, 21(1). https://doi.org/10.1186/s12986-024-00802-2 CR - Cao, T., She, D., Zhang, X., & Yang, Z. (2022). Understanding the influencing factors and mechanisms (land use changes and check dams) controlling changes in the soil organic carbon of typical loess watersheds in china. Land Degradation &Amp; Development, 33(16), 3150-3162. https://doi.org/10.1002/ldr.4378 CR - Chen, T. and Guestrin, C. (2016). Xgboost: a scalable tree boosting system.. https://doi.org/10.48550/arxiv.1603.02754 CR - Crescimanno, M., Galati, A., & Bal, T. (2014). The role of the economic crisis on the competitiveness of the agri-food sector in the main mediterranean countries. Agricultural Economics (Zemědělská Ekonomika), 60(2), 49-64. https://doi.org/10.17221/59/2013-agricecon CR - Dutschmann, T. and Baumann, K. (2021). Evaluating high-variance leaves as uncertainty measure for random forest regression. Molecules, 26(21), 6514. https://doi.org/10.3390/molecules26216514 CR - Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 165-187. https://doi.org/10.1007/978-1-59745-530-5_9 CR - Elias, R., Fang, L., & Wahab, M. (2011). Electricity load forecasting based on weather variables and seasonalities: a neural network approach. Icsssm11. https://doi.org/10.1109/icsssm.2011.5959472 CR - EMİRHAN, P. N. and TURGUTLU, E. (2023). İşgücü talebi̇ uluslararasi ti̇carete tepki̇ veri̇yor mu? Türk i̇malat sektöründen kanitlar. Öneri Dergisi, 18(59), 187-201. https://doi.org/10.14783/maruoneri.1075714 CR - Erdem, Z. B. (2010). The assessment of coal's contribution to sustainable energy development in Turkey. Energy Exploration &Amp; Exploitation, 28(2), 117-129. https://doi.org/10.1260/0144-5987.28.2.117 CR - Erduman, Y., Eren, O., & Gül, S. (2020). Import Content of Turkish Production And Exports: A Sectoral Analysis. Central Bank Review, 20(4), 155-168. https://doi.org/10.1016/j.cbrev.2020.07.001 CR - Fantke, P. and Ernstoff, A. (2017). Lca of chemicals and chemical products. Life Cycle Assessment, 783-815. https://doi.org/10.1007/978-3-319-56475-3_31 CR - Ferrat, L. A., Goodfellow, M., & Terry, J. R. (2018). Classifying dynamic transitions in high dimensional neural mass models: a random forest approach. PLOS Computational Biology, 14(3), e1006009. https://doi.org/10.1371/journal.pcbi.1006009 CR - Flyvbjerg, B. (2006). From nobel prize to project management: getting risks right. Project Management Journal, 37(3), 5-15. https://doi.org/10.1177/875697280603700302 CR - Ge, X., Ding, J., Jin, X., Wang, J., Chen, X., Li, X., … & Xie, B. (2021). Estimating agricultural soil moisture content through uav-based hyperspectral images in the arid region. Remote Sensing, 13(8), 1562. https://doi.org/10.3390/rs13081562 CR - Gür, Y. E., & Eşidir, K. A. (2024). Türkiye Hurda Demir Çelik İthalatının Gelecek Değerlerinin Derin Öğrenme, Makine Öğrenmesi ve Topluluk Öğrenme Yöntemleri ile Öngörülmesi. Alanya Akademik Bakış, 8(3), 885-908. https://doi.org/10.29023/alanyaakademik.1497646 CR - Gür, Y. E. (2024). Stock Price Forecasting Using Machine Learning and Deep Learning Algorithms: A Case Study for the Aviation Industry. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 25-34. https://doi.org/10.35234/fumbd.1357613 CR - Gür, Y. E. (2024). Development and application of machine learning models in US consumer price index forecasting: Analysis of a hybrid approach. Data Science in Finance and Economics, 4(4), 469-513. https://doi.org/10.3934/DSFE.2024020 CR - Gür, Y. E. (2024). Innovation in the dairy industry: forecasting cow cheese production with machine learning and deep learning models. International Journal of Agriculture Environment and Food Sciences, 8(2), 327-346. https://doi.org/10.31015/jaefs.2024.2.9 CR - Huertas‐Tato, J. and Brito, M. (2018). Using smart persistence and random forests to predict photovoltaic energy production. Energies, 12(1), 100. https://doi.org/10.3390/en12010100 CR - Hui, D., Wang, J., Le, X., Shen, W., & Ren, H. (2012). Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in china. Forest Ecology and Management, 264, 72-80. https://doi.org/10.1016/j.foreco.2011.10.012 CR - Ji, H., Fu, X., & Cheng, K. (2014). Engineering drawing man-hour forecasting based on bp-ga in design of chemical equipment. 2014 20th International Conference on Automation and Computing. https://doi.org/10.1109/iconac.2014.6935487 CR - Jošić, H. and Žmuk, B. (2022). A machine learning approach to forecast international trade: the case of croatia. Business Systems Research Journal, 13(3), 144-160. https://doi.org/10.2478/bsrj-2022-0030 CR - Kishi, H. and Sekine, Y. (2003). Simple prediction of atmospheric concentration of hydrophilic compounds based on the classification of industrial uses. QSAR &Amp; Combinatorial Science, 22(3), 396-398. https://doi.org/10.1002/qsar.200390029 CR - Li, G., Yu, Z., Zheng, B., Qi, B., Su, Z., & Wang, D. (2023). Voltage sag source location based on the random forest. Journal of Physics: Conference Series, 2584(1), 012144. https://doi.org/10.1088/1742-6596/2584/1/012144 CR - Li, N., & Li, M. (2022). Forecast of Chemical Export Trade Based on PSO‐BP Neural Network Model. Journal of Mathematics, 2022(1), 1487746. https://doi.org/10.1155/2022/1487746 CR - Liang, W., Luo, S., Zhao, G., & Wu, H. (2020). Predicting hard rock pillar stability us ing gbdt, xgboost, and lightgbm algorithms. Mathematics, 8(5), 765. https://doi.org/10.3390/math8050765 CR - MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40. https://doi.org/10.1037/1082-989x.7.1.19 CR - Marill, K. A. (2004). Advanced statistics: linear regression, part ii: multiple linear regression. Academic Emergency Medicine, 11(1), 94-102. https://doi.org/10.1111/j.1553-2712.2004.tb01379.x CR - Medeiros, M. C. (2022). Forecasting With Machine Learning Methods. Advanced Studies in Theoretical and Applied Econometrics, 111-149. https://doi.org/10.1007/978-3-031-15149-1_4 CR - Meng, F., Weng, K., Shallal, B., Chen, X., & Mourshed, M. (2018). Forecasting algorithms and optimization strategies for building energy management & demand response. Sp 2018. https://doi.org/10.3390/proceedings2151133 CR - Metlek, S., Kandilli, C., & Kayaalp, K. (2021). Prediction of the effect of temperature on electric power in photovoltaic thermal systems based on natural zeolite plates. International Journal of Energy Research, 46(5), 6370-6382. https://doi.org/10.1002/er.7575 CR - Mishra, S., Srivastava, R., Muhammad, A., Amit, A., Chiavazzo, E., Fasano, M., … & Asinari, P. (2023). The impact of physicochemical features of carbon electrodes on the capacitive performance of supercapacitors: a machine learning approach. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33524-1 CR - Moon, J., Ke, F., & Sokolikj, Z. (2020). Automatic assessment of cognitive and emotional states in virtual reality‐based flexibility training for four adolescents with autism. British Journal of Educational Technology, 51(5), 1766-1784. https://doi.org/10.1111/bjet.13005 CR - Moshiri, S. and Kheirandish, E. (2023). Global impacts of oil price shocks: the trade effect. Journal of Economic Studies, 51(1), 126-144. https://doi.org/10.1108/jes-08-2022-0455 CR - Nas, S., Akboz Caner, A., & Ergin Ünal, A. (2024). Türkiye’de Enflasyon Oranlarının Makine Öğrenme Yöntemi ile Tahmini. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 23(3), 1029-1045. https://doi.org/10.21547/jss.1371005 CR - Naseem, M., Chaudhary, K., Sharma, B. N., & Lal, A. G. (2019). Using ensemble decision tree model to predict student dropout in computing science. 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). https://doi.org/10.1109/csde48274.2019.9162389 CR - Özemre, M. and Kabadurmuş, Ö. (2020). A big data analytics based methodology for strategic decision making. Journal of Enterprise Information Management, 33(6), 1467-1490. https://doi.org/10.1108/jeim-08-2019-0222 CR - Palkovits, R. and Palkovits, S. (2019). Using artificial intelligence to forecast water oxidation catalysts. ACS Catalysis, 9(9), 8383-8387. https://doi.org/10.1021/acscatal.9b01985 CR - Pisuttinusart, C., Jatuporn, C., Suvanvihok, V., & Seerasarn, N. (2022). Forecasting the import demand for chemical fertilizer in Thailand. The EUrASEANs: journal on global socio-economic dynamics, (3 (34)), 61-70. https://doi.org/10.35678/2539-5645.3(34).2022.61-70 CR - Polat, K., Şentürk, Ü. K., & Arıcan, M. (2023). A novel cuffless blood pressure prediction: uncovering new features and new hybrid ml models. Diagnostics, 13(7), 1278. https://doi.org/10.3390/diagnostics13071278 CR - Renas Rajab Asaad and M. Abdulazeez, A. (2024). Comprehensive classification of iris flower species: a machine learning approach. Indonesian Journal of Computer Science, 13(1). https://doi.org/10.33022/ijcs.v13i1.3717 CR - Sercu, P. and Uppal, R. (2003). Exchange rate volatility and international trade: a general-equilibrium analysis. European Economic Review, 47(3), 429-441. https://doi.org/10.1016/s0014-2921(01)00175-1 CR - Sevim, A., Demir, İ., Höfte, M., Humber, R. A., & Demirbağ, Z. (2009). Isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. BioControl, 55(2), 279-297. https://doi.org/10.1007/s10526-009-9235-8 CR - Svetnik, V., Liaw, A., Tong, C., Culberson, J., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947-1958. https://doi.org/10.1021/ci034160g CR - Şener, S., Savrul, M., & Aydın, O. (2014). Structure of small and medium-sized enterprises in turkey and global competitiveness strategies. Procedia - Social and Behavioral Sciences, 150, 212-221. https://doi.org/10.1016/j.sbspro.2014.09.119 CR - Şimşek, A. I., Bulut, E., Gur, Y. E., & Tarla, E. G. (2024). A novel approach to Predict WTI crude spot oil price: LSTM-based feature extraction with Xgboost Regressor. Energy, 309, 133102. https://doi.org/10.1016/j.energy.2024.133102 CR - Şimşek, A. I. (2024). Forecasting consumer price index using macroeconomic variables: a comparative analysis of machine learning and deep learning approaches. Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (28), 15-29. https://doi.org/10.29029/busbed.1394983 CR - Truong, N., Ngo, N., & Pham, A. (2021). Forecasting time-series energy data in buildings using an additive artificial intelligence model for improving energy efficiency. Computational Intelligence and Neuroscience, 2021, 1-12. https://doi.org/10.1155/2021/6028573 CR - Türkiye Cumhuriyet Merkez Bankası Elektronik Veri Dağıtım Sistemi (TCMB-EVDS), https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket, , Erişim Tarihi: 22.05.2024. CR - Türkiye İstatistik Kurumu (2024), www.tuik.gov.tr, Erişim Tarihi: 15.05.2024. CR - Tyass, I., Khalili, T., Rafik, M., Bellat, A., Raihani, A., & Mansouri, K. (2023). Wind speed prediction based on statistical and deep learning models. International Journal of Renewable Energy Development, 12(2), 288-299. https://doi.org/10.14710/ijred.2023.48672 CR - Walker, J. D., Dimitrov, S., & Mekenyan, O. G. (2003). Using hpv chemical data to develop qsars for non‐hpv chemicals: opportunities to promote more efficient use of chemical testing resources. QSAR &Amp; Combinatorial Science, 22(3), 386-395. https://doi.org/10.1002/qsar.200390028 CR - Wang, L., Wang, X., Chen, A., Jin, X., & Che, H. (2020). Prediction of type 2 diabetes risk and its effect evaluation based on the xgboost model. Healthcare, 8(3), 247. https://doi.org/10.3390/healthcare8030247 CR - Wang, N., Liu, W., Sun, S., & Wang, Q. (2021). The influence of complexity of imported products on total factor productivity. Mobile Information Systems, 2021, 1-7. https://doi.org/10.1155/2021/3384068 CR - Wang, Y. (2022). Import and export trade forecasting algorithm based on blockchain security and pso optimized hybrid rvm model. Security and Privacy, 6(2). https://doi.org/10.1002/spy2.218 CR - Wen, B., Li, R., Zhao, X., Ren, S., Chang, Y., Zhang, K., … & Zhu, X. (2021). A quadratic regression model to quantify plantation soil factors that affect tea quality. Agriculture, 11(12), 1225. https://doi.org/10.3390/agriculture11121225 CR - Wen, J., Zhang, Y., Yang, G., He, Z., & Zhang, W. (2019). Path loss prediction based on machine learning methods for aircraft cabin environments. IEEE Access, 7, 159251-159261. https://doi.org/10.1109/access.2019.2950634 CR - Wie, Y. M., Lee, K. G., Lee, K. H., Ko, T. S., & Lee, K. H. (2020). The experimental process design of artificial lightweight aggregates using an orthogonal array table and analysis by machine learning. Materials, 13(23), 5570. https://doi.org/10.3390/ma13235570 CR - Yap, M., Johnston, R. L., Foley, H., MacDonald, S., Kondrashova, O., Tran, K., … & Waddell, N. (2021). Verifying explainability of a deep learning tissue classifier trained on rna-seq data. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81773-9 CR - Zareipour, H., Cañizares, C. A., & Bhattacharya, K. (2010). Economic impact of electricity market price forecasting errors: a demand-side analysis. IEEE Transactions on Power Systems, 25(1), 254-262. https://doi.org/10.1109/tpwrs.2009.2030380 CR - Zhang, Z., Xin, Q., & Li, W. (2021). Machine learning‐based modeling of vegetation leaf area index and gross primary productivity across north america and comparison with a process‐based model. Journal of Advances in Modeling Earth Systems, 13(10). https://doi.org/10.1029/2021ms002802 CR - Zhu, C., Liu, X., & Chen, D. (2024). Prediction of digital transformation of manufacturing industry based on interpretable machine learning. Plos One, 19(3), e0299147. https://doi.org/10.1371/journal.pone.0299147 CR - Zolfigol, M. A., Azizian, S., Torabi, M., Yarie, M., & Notash, B. (2024). The importance of nonstoichiometric ratio of reactants in organic synthesis. Journal of Chemical Education, 101(3), 877-881. https://doi.org/10.1021/acs.jchemed.3c00530 UR - https://doi.org/10.18069/firatsbed.1580620 L1 - http://dergipark.org.tr/tr/download/article-file/4345417 ER -